Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides
Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 3-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a method for constructing semiclassical asymptotic solutions of inhomogeneous partial differential and pseudodifferential equations with localized right-hand sides. These problems are related to the asymptotics of Green's function for this type of operators, in particular, for the Helmholtz equation, which has been studied in numerous papers. The method is based on a constructive description of the corresponding Lagrangian manifolds and on the recently proposed new representations of the Maslov canonical operator in a neighborhood of Lagrangian singularities (caustics and caustic sets). The method underlies an analytic-numerical algorithm for constructing efficient asymptotic solutions to problems of the above-mentioned type in various fields of physics and continuum mechanics.
Keywords: equation with right-hand side, Lagrangian manifold, semiclassical asymptotics, canonical operator.
@article{TMF_2023_214_1_a0,
     author = {A. Yu. Anikin and S. Yu. Dobrokhotov and V. E. Nazaikinskii and M. Rouleux},
     title = {Lagrangian manifolds and the~construction of asymptotics for (pseudo)differential equations with~localized right-hand sides},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--29},
     year = {2023},
     volume = {214},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Anikin
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
AU  - M. Rouleux
TI  - Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2023
SP  - 3
EP  - 29
VL  - 214
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a0/
LA  - ru
ID  - TMF_2023_214_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Anikin
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%A M. Rouleux
%T Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2023
%P 3-29
%V 214
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a0/
%G ru
%F TMF_2023_214_1_a0
A. Yu. Anikin; S. Yu. Dobrokhotov; V. E. Nazaikinskii; M. Rouleux. Lagrangian manifolds and the construction of asymptotics for (pseudo)differential equations with localized right-hand sides. Teoretičeskaâ i matematičeskaâ fizika, Tome 214 (2023) no. 1, pp. 3-29. http://geodesic.mathdoc.fr/item/TMF_2023_214_1_a0/

[1] V. M. Babich, “O korotkovolnovoi asimptotike funktsii Grina dlya uravneniya Gelmgoltsa”, Matem. sb., 65(107):4 (1964), 576–630 | MR | Zbl

[2] V. M. Babich, “O korotkovolnovoi asimptotike resheniya zadachi o tochechnom istochnike v neodnorodnoi srede”, Zh. vychisl. matem. i matem. fiz., 5:5 (1965), 949–951 | Zbl

[3] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR

[4] B. R. Vainberg, “O korotkovolnovoi asimptotike reshenii statsionarnykh zadach i asimptotike pri $t\to\infty$ reshenii nestatsionarnykh zadach”, UMN, 30:2(182) (1975), 3–55 | DOI | MR | Zbl

[5] J. B. Keller, “Geometrical optics theory of diffraction”, J. Opt. Soc. Am., 52:2 (1962), 116–130 | DOI | MR

[6] V. V. Kucherenko, “Kvaziklassicheskaya asimptotika funktsii tochechnogo istochnika dlya statsionarnogo uravneniya Shredingera”, TMF, 1:3 (1969), 384–406 | MR

[7] V. V. Kucherenko, “Nekotorye svoistva korotkovolnovoi asimptotiki fundamentalnogo resheniya uravneniya $[\Delta+k^2n^2(x)]u=0$”, Trudy MIEM, 25 (1972), 32–55

[8] L. M. Brekhovskikh, O. A. Godin, Akustika sloistykh sred, Nauka, M., 1989 | DOI

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR

[10] J. J. Duistermaat, L. Hörmander, “Fourier integral operators. II”, Acta Math., 128:3–4 (1972), 183–269 | DOI | MR

[11] A. Melin, J. Sjöstrand, “Fourier integral operators with complex phase functions and applications to an interior boundary problem”, Comm. Partial Differ. Eq., 1:4 (1976), 313–400 | DOI | MR

[12] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | MR | Zbl | Zbl

[13] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 | Zbl

[14] R. Melrose, G. A. Uhlmann, “Lagrangian intersection and the Cauchy problem”, Comm. Pure Appl. Math., 32:4 (1979), 483–519 | DOI | MR

[15] B. Yu. Sternin, V. E. Shatalov, O rasprostranenii elektromagnitnykh voln v korotkovolnovom diapazone, Preprint No3333-78, VINITI, M., 1978

[16] B. Yu. Sternin, V. E. Shatalov, “Ob odnom metode resheniya uravnenii s prostymi kharakteristikami”, Matem. sb., 116(158):1(9) (1981), 29–71 | MR | Zbl

[17] L. Khermander, “Integralnye operatory Fure. I”, Matematika, 16:2 (1972), 67–136 | DOI | MR | Zbl

[18] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | DOI | MR

[19] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Effektivnye asimptotiki reshenii zadachi Koshi s lokalizovannymi nachalnymi dannymi dlya lineinykh sistem differentsialnykh i psevdodifferentsialnykh uravnenii”, UMN, 76:5(461) (2021), 3–80 | DOI | MR

[20] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Nestandartnye kharakteristiki i operatornyi metod Maslova v lineinykh zadachakh o neustanovivshikhsya volnakh na vode”, Funkts. analiz i ego prilozh., 19:4 (1985), 43–54 | MR | Zbl

[21] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, M. Rulo, “Kanonicheskii operator Maslova na pare lagranzhevykh mnogoobrazii i uravneniya s lokalizovannoi pravoi chastyu”, Dokl. RAN. Matem. fizika, 475:6 (2017), 624–628 | DOI | MR

[22] S. Yu. Dobrokhotov, B. Tirotstsi, A. I. Shafarevich, “Predstavleniya bystroubyvayuschikh funktsii kanonicheskim operatorom Maslova”, Matem. zametki, 82:5 (2007), 792–796 | DOI | DOI | MR | Zbl

[23] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego prilozh., 1:1 (1967), 1–14 | DOI | MR | Zbl

[24] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | DOI

[25] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552 | DOI | MR

[26] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI | DOI | MR

[27] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[28] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR