Kinetic coefficients in a~time-dependent Green's function formalism at finite temperature
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 538-554
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss microscopic foundations of dissipation arising in a model Fermi or Bose system with weak local interaction. We consider the dynamics of equilibrium fluctuations in the Keldysh–Schwinger formalism and discuss the relation between dissipation and pinch singularities of perturbation theory diagrams. Using the Dyson equation, we define and calculate the dissipation parameter in the two-loop approximation. We show that this parameter is analogous to Onsager's kinetic coefficient and is associated with decay in the quasiparticle spectrum.
Keywords:
quantum field theory, statistical mechanics, time-dependent Green's functions at finite temperature, kinetic coefficient.
@article{TMF_2022_213_3_a9,
author = {V. A. Krivorol and M. Yu. Nalimov},
title = {Kinetic coefficients in a~time-dependent {Green's} function formalism at finite temperature},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {538--554},
publisher = {mathdoc},
volume = {213},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/}
}
TY - JOUR AU - V. A. Krivorol AU - M. Yu. Nalimov TI - Kinetic coefficients in a~time-dependent Green's function formalism at finite temperature JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 538 EP - 554 VL - 213 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/ LA - ru ID - TMF_2022_213_3_a9 ER -
%0 Journal Article %A V. A. Krivorol %A M. Yu. Nalimov %T Kinetic coefficients in a~time-dependent Green's function formalism at finite temperature %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 538-554 %V 213 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/ %G ru %F TMF_2022_213_3_a9
V. A. Krivorol; M. Yu. Nalimov. Kinetic coefficients in a~time-dependent Green's function formalism at finite temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 538-554. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/