@article{TMF_2022_213_3_a9,
author = {V. A. Krivorol and M. Yu. Nalimov},
title = {Kinetic coefficients in a~time-dependent {Green's} function formalism at finite temperature},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {538--554},
year = {2022},
volume = {213},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/}
}
TY - JOUR AU - V. A. Krivorol AU - M. Yu. Nalimov TI - Kinetic coefficients in a time-dependent Green's function formalism at finite temperature JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 538 EP - 554 VL - 213 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/ LA - ru ID - TMF_2022_213_3_a9 ER -
%0 Journal Article %A V. A. Krivorol %A M. Yu. Nalimov %T Kinetic coefficients in a time-dependent Green's function formalism at finite temperature %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 538-554 %V 213 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/ %G ru %F TMF_2022_213_3_a9
V. A. Krivorol; M. Yu. Nalimov. Kinetic coefficients in a time-dependent Green's function formalism at finite temperature. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 538-554. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a9/
[1] D. P. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | Zbl
[2] D. P. Zubarev, V. G. Morozov, G. Repke, Statisticheskaya mekhanika neravnovesnykh protsessov, v. 1, Fizmatlit, M., 2002 | Zbl
[3] T. Brauner, S. Hartnoll, P. Kovtun, H. Liu, M. Mezei, A. Nicolis, R. Penco, S.-H. Shao, D. T. Son, Snowmass white paper: effective field theories for condensed matter systems, arXiv: 2203.10110
[4] M. Bluhm, A. Kalweit, M. Nahrgang et al., “Dynamics of critical fluctuations: Theory – phenomenology – heavy-ion collisions”, Nucl. Phys. A, 1003 (2020), 122016, 64 pp., arXiv: 2001.08831 | DOI
[5] R. P. Feynman, F. L. Vernon, Jr., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys., 24 (1963), 118–173 | DOI | MR
[6] M. Patriarca, “Feynman Vernon model of a moving thermal environment”, Phys. E, 29:1 (2005), 243–250 | DOI
[7] U. Weiss, Quantum Dissipative Systems, Series in Modern Condensed Matter Physics, 13, World Sci., Singapore, 2008 | MR
[8] Á. Rivas, S. F. Huelga, Open Quantum Systems. An Introduction, Springer Briefs in Physics, Springer, Berlin, Heidelberg, 2012 | DOI | MR
[9] G. Lindblad, “On the generators of quantum dynamical semigroups”, Commun. Math. Phys., 48:2 (1976), 119–130 | DOI | MR
[10] V. Gorini, A. Kossakowski, E. C. G. Sudarshan, “Completely positive dynamical semigroups of $N$-level systems”, J. Math. Phys., 17:5 (1976), 821–825 | DOI | MR
[11] F. Nathan, M. S. Rudner, “Universal Lindblad equation for open quantum systems”, Phys. Rev. B, 102:11 (2020), 115109, 24 pp., arXiv: ; Erratum, 104 (2021), 119901, 2 pp. 2004.01469 | DOI | DOI
[12] V. Tarasov, Quantum Mechanics of Non-Hamiltonian and Dissipative Systems, Monograph Series On Nonlinear Science and Complexity, 7, Elsevier, Amsterdam, 2008 | MR
[13] R. Kubo, “Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–586 | DOI | MR
[14] R. Kubo, M. Yokota, S. Nakajima, “Statistical-mechanical theory of irreversible processes. II. Response to thermal disturbance”, J. Phys. Soc. Japan, 12:11 (1957), 1203–1211 | DOI | MR
[15] M. Mouas, J.-G. Gasser, S. Hellal, B. Grosdidier, A. Makradi, S. Belouettar, “Diffusion and viscosity of liquid tin: Green–Kubo relationship-based calculations from molecular dynamics simulations”, J. Chem. Phys., 136:9 (2012), 094501, 16 pp. | DOI
[16] Pu Liu, E. Harder, B. J. Berne, “On the calculation of diffusion coefficients in confined fluids and interfaces with an application to the liquid–vapor interface of water”, J. Phys. Chem. B, 108:21 (2004), 6595–6602 | DOI
[17] N. A. Volkov, M. V. Posysoev, A. K. Shchekin, “The effect of simulation cell size on the diffusion coefficient of an ionic surfactant aggregate”, Colloid J., 80:3 (2018), 248–254 | DOI
[18] L. Ts. Adzhemyan, F. M. Kuni, T. Yu. Novozhilova, “Nelineinoe obobschenie metoda proektiruyuschikh operatorov Mori”, TMF, 18:3 (1974), 383–392 | DOI | MR | Zbl
[19] G. M. Eliashberg, “Kineticheskoe uravnenie dlya vyrozhdennoi sistemy fermi-chastits,”, ZhETF, 41:4, 1241–1251 | MR
[20] P. I. Arseev, “O diagrammnoi tekhnike dlya neravnovesnykh sistem: vyvod, nekotorye osobennosti i nekotorye primeneniya”, UFN, 185:12 (2015), 1271–1321 | DOI | DOI
[21] L. M. Sieberer, A. Chiocchetta, A. Gambassi, U. C. Täuber, S. Diehl, “Thermodynamic equilibrium as a symmetry of the Schwinger–Keldysh action”, Phys. Rev. B, 92:13 (2015), 134307, 22 pp., arXiv: 1505.00912 | DOI
[22] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF, SPb., 1998 | DOI | MR | Zbl
[23] J. Honkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Effective large-scale model of boson gas from microscopic theory”, Nucl. Phys. B, 939 (2019), 105–129 | DOI
[24] M. F. Maghrebi, A. V. Gorshkov, “Nonequilibrium many-body steady states via Keldysh formalism”, Phys. Rev. B, 93:1 (2016), 014307, 15 pp., arXiv: 1507.01939 | DOI
[25] R. van Leeuwen, N. Dahlen, G. Stefanucci, C.-O. Almbladh, U. von Barth, “Introduction to the Keldysh formalism”, Time-Dependent Density Functional Theory, Lecture Notes in Physics, 706, eds. M. A. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. Gross, Springer, Berlin, 2006, 33–59 | DOI
[26] F. M. Haehl, R. Loganayagam, M. Rangamani, “Schwinger–Keldysh formalism I: BRST symmetries and superspace”, JHEP, 2017:6 (2017), 69, 91 pp. | DOI | MR | Zbl
[27] M. J. B. Pereira, Keldysh field theory, University of Säo Paulo, Säo Paulo, 2019
[28] M. Geracie, F. M. Haehl, R. Loganayagam, P. Narayan, D. M. Ramirez, M. Rangamani, “Schwinger–Keldysh superspace in quantum mechanics”, Phys. Rev. D, 97:10 (2018), 105023, 17 pp., arXiv: 1712.04459 | DOI | MR
[29] A. Kamenev, A. Levchenko, “Keldysh technique and non-linear $\sigma$-model: basic principles and applications”, Adv. Phys., 58:3 (2009), 197–319, arXiv: 0901.3586 | DOI
[30] J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge Univ. Press, Cambridge, 2007 | DOI | MR
[31] J. Rammer, H. Smith, “Quantum field-theoretical methods in transport theory of metals”, Rev. Modern Phys., 58:2 (1986), 323–359 | DOI
[32] L. Kadanov, G. Beim, Kvantovaya statisticheskaya mekhanika. Metody funktsii Grina v teorii ravnovesnykh i neravnovesnykh protsessov, Mir, M., 1964 | DOI | MR | Zbl
[33] T. Tanaka, Y. Nishida, Thermal conductivity of a weakly interacting Bose gas by quasi-one dimensionality, arXiv: 2203.04936
[34] S. Jeon, “Hydrodynamic transport coefficients in relativistic scalar field theory”, Phys. Rev. D, 52:6 (1995), 3591–3642 | DOI
[35] S. Jeon, L. G. Yaffe, “From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory”, Phys. Rev. D, 53:10 (1996), 5799–5809 | DOI
[36] Y. Hidaka, T. Kunihiro, “Renormalized linear kinetic theory as derived from quantum field theory: A novel diagrammatic method for computing transport coefficients”, Phys. Rev. D, 83:7 (2011), 076004, 18 pp., arXiv: 1009.5154 | DOI
[37] J. F. Nieves, S. Sahu, Taming the pinch singularities in the two-loop neutrino self-energy in a medium, arXiv: 2104.04459
[38] E. T. Akhmedov, U. Moschella, F. K. Popov, “Characters of different secular effects in various patches of de Sitter space”, Phys. Rev. D, 99:8 (2019), 086009, 15 pp. | DOI | MR
[39] E. T. Akhmedov, Ph. Burda, “Solution of the Dyson–Schwinger equation on a de Sitter background in the infrared limit”, Phys. Rev. D, 86:4 (2012), 044031, 10 pp., arXiv: 1202.1202 | DOI
[40] E. T. Akhmedov, F. K. Popov, V. M. Slepukhin, “Infrared dynamics of the massive $\phi_4$ theory on de Sitter space”, Phys. Rev. D, 88:2 (2013), 024021, 10 pp., arXiv: 1303.1068 | DOI
[41] E. T. Akhmedov, N. Astrakhantsev, F. K. Popov, “Secularly growing loop corrections in strong electric fields”, JHEP, 09 (2014), 71, 18 pp. | DOI
[42] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinskii, Metody kvantovoi teorii polya v statisticheskoi fizike, Dobrosvet, M., 1998 | MR
[43] J. O. Andersen, “Theory of the weakly interacting Bose gas”, Rev. Modern Phys., 76:2 (2004), 599–639, arXiv: cond-mat/0305138 | DOI | MR
[44] Yu. Khonkonen, “Konturno uporyadochennye funktsii Grina v stokhasticheskoi teorii polya”, TMF, 175:3 (2013), 455–464 | DOI | DOI | MR | Zbl
[45] Yu. Khonkonen, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, “Kineticheskaya teoriya bozonnogo gaza”, TMF, 200:3 (2019), 507–521 | DOI | DOI | MR
[46] A. N. Vasilev, Funktsionalnye metody v kvantovoi teorii polya i statistike, Izd-vo Leningr. un-ta, L., 1976
[47] Yu. A. Zhavoronkov, M. V. Komarova, Yu. G. Molotkov, M. Yu. Nalimov, Yu. Khonkonen, “Kriticheskaya dinamika fazovogo perekhoda v sverkhtekuchee sostoyanie”, TMF, 200:2 (2019), 361–377 | DOI | DOI | MR
[48] L. V. Keldysh, “Diagrammnaya tekhnika dlya neravnovesnykh protsessov”, ZhETF, 47:4 (1964), 1515–1527 | MR
[49] J. Schwinger, “Brownian motion of a quantum oscillator”, J. Math. Phys., 2:3 (1961), 407–432 | DOI | MR
[50] M. J. Hyrkäs, D. Karlsson, R. van Leeuwen, “Cutting rules and positivity in finite temperature many-body theory”, J. Phys. A: Math. Theor., 55:33 (2022), 335301, arXiv: 2203.11083 | DOI | MR
[51] R. C. Hwa, V. L. Teplitz, Homology and Feynman Integrals, Benjamin, New York, 1966 | MR
[52] H. W. Wyld, Jr., “Formulation of the theory of turbulence in an incompressible fluid”, Ann. Phys., 14 (1961), 143–165 | DOI | MR
[53] L. D. Landau, E. M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid Mechanics, Elsevier, Amsterdam, 2013 | MR
[54] L. Ts. Adzhemyan, D. A. Evdokimov, M. Hnatič, E. V. Ivanova, M. V. Kompaniets, A. Kudlis, D. V. Zakharov, “Model A of critical dynamics: 5-loop expansion study”, Phys. A, 600 (2022), 127530, 17 pp. | DOI
[55] L. Ts. Adzhemyan, D. A. Evdokimov, M. Hnatič, E. V. Ivanova, M. V. Kompaniets, A. Kudlis, D. V. Zakharov, “The dynamic critical exponent z for 2d and 3d Ising models from five-loop $\varepsilon$ expansion”, Phys. Lett. A, 425 (2022), 127870, 6 pp., arXiv: 2111.04719 | DOI
[56] U. C. Täuber, Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behavior, Cambridge Univ. Press, Cambridge, 2014 | DOI
[57] U. C. Täuber, “Renormalization group: applications in statistical physics”, Nucl. Phys. B: Proc. Suppl., 228 (2012), 7–34, arXiv: 1112.1375 | DOI | MR
[58] M. Gnatich, M. V. Komarova, M. Yu. Nalimov, “Mikroskopicheskoe obosnovanie stokhasticheskoi F-modeli kriticheskoi dinamiki”, TMF, 175:3 (2013), 398–407 | DOI | DOI | MR | Zbl
[59] A. M. Ilin, A. A. Ershov, “Asimptotika dvumernykh integralov, singulyarno zavisyaschikh ot malogo parametra”, Tr. IMM UrO RAN, 15:3 (2009), 116–126 | DOI | MR
[60] A. A. Ershov, M. I. Rusanova, “Asimptotika mnogomernykh integralov, singulyarno zavisyaschikh ot malogo parametra”, Tr. IMM UrO RAN, 22:1 (2016), 84–92 | DOI | MR
[61] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009 | Zbl
[62] R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, Dover Publ., New York, 2012 | MR
[63] J. Sulpizio, L. Ella, A. Rozen et al., “Visualizing Poiseuille flow of hydrodynamic electrons”, Nature, 576:7785 (2019), 75–79, arXiv: 1905.11662 | DOI
[64] K. Novoselov, A. K. Geim, S. Morozov et al., “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438:7065 (2005), 197–200, arXiv: cond-mat/0509330 | DOI