Measuring the coupling constant of polarized fermions via sound wave spectra
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 523-537 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The system of hydrodynamic equations is generally limited to the continuity and Euler equations. However, taking higher moments of the distribution function into account improves the description of kinetic properties. We derive the pressure tensor evolution equation (PTEE) for spin-polarized degenerate fermions. We find that the pressure tensor enters the term describing the interaction that generalizes the $p$-wave interaction in the Euler equation. Hence, calculating the interaction for the PTEE allows describing the interaction in the Euler equation more accurately. The proposed model is applied to small-amplitude bulk collective excitations in homogeneous fermions and trapped fermions, yielding a method for experimental measurements of the coupling constant of polarized fermions. It is demonstrated that the anisotropy in the momentum space, manifesting itself in the difference of pressures in the anisotropy direction and the perpendicular directions, leads to a method for determining the coupling constant.
Keywords: degenerate fermions, hydrodynamics, pressure evolution equation, spinor quantum gas, separate spin evolution.
@article{TMF_2022_213_3_a8,
     author = {P. A. Andreev},
     title = {Measuring the~coupling constant of polarized fermions via sound wave spectra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {523--537},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a8/}
}
TY  - JOUR
AU  - P. A. Andreev
TI  - Measuring the coupling constant of polarized fermions via sound wave spectra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 523
EP  - 537
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a8/
LA  - ru
ID  - TMF_2022_213_3_a8
ER  - 
%0 Journal Article
%A P. A. Andreev
%T Measuring the coupling constant of polarized fermions via sound wave spectra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 523-537
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a8/
%G ru
%F TMF_2022_213_3_a8
P. A. Andreev. Measuring the coupling constant of polarized fermions via sound wave spectra. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 523-537. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a8/

[1] A. Minguzzi, P. Vignolo, M. L. Chiofalo, M. P. Tosi, “Hydrodynamic excitations in a spin-polarized Fermi gas under harmonic confinement in one dimension”, Phys. Rev. A, 64:3 (2001), 033605, 5 pp. | DOI

[2] S. Hannibal, P. Kettmann, M. D. Croitoru, V. M. Axt, T. Kuhn, “Persistent oscillations of the order parameter and interaction quench phase diagram for a confined Bardeen–Cooper–Schrieffer Fermi gas”, Phys. Rev. A, 98:5 (2018), 053605, 10 pp., arXiv: 1805.11378 | DOI

[3] M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D. Kedar, P. A. Murthy, M. Neidig, T. Lompe, S. Jochim, “Observation of pair condensation in the quasi-2D BEC-BCS crossover”, Phys. Rev. Lett., 114:23 (2015), 230401, 5 pp., arXiv: 1409.5373 | DOI

[4] I. Boettcher, L. Bayha, D. Kedar, P. A. Murthy, M. Neidig, M. G. Ries, A. N. Wenz, G. Zürn, S. Jochim, T. Enss, “Equation of state of ultracold fermions in the 2D BEC-BCS crossover region”, Phys. Rev. Lett., 116:4 (2016), 045303, 5 pp., arXiv: 1509.03610 | DOI

[5] D. Lee, “Ground-state energy of spin-$\frac{1}{2}$ fermions in the unitary limit”, Phys. Rev. B, 73:11 (2006), 115112, 7 pp., arXiv: cond-mat/0511332 | DOI

[6] N. W. M. Plantz, H. T. C. Stoof, “Nonrelativistic fermions with holographic interactions and the unitary Fermi gas”, Phys. Rev. A, 99:1 (2019), 013606, 8 pp., arXiv: 1810.09759 | DOI

[7] B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, M. W. Zwierlein, “Spectral response and contact of the unitary Fermi gas”, Phys. Rev. Lett., 122:20 (2019), 203402, 6 pp., arXiv: 1902.08548 | DOI

[8] C. Carcy, S. Hoinka, M. G. Lingham, P. Dyke, C. C. N. Kuhn, H. Hu, C. J. Vale, “Contact and sum rules in a near-uniform Fermi gas at unitarity”, Phys. Rev. Lett., 122:20 (2019), 203401, 5 pp., arXiv: 1902.07853 | DOI

[9] E. Nakano, H. Yabu, “BEC-polaron gas in a boson-fermion mixture: A many-body extension of Lee–Low–Pines theory”, Phys. Rev. B, 93:20 (2016), 205144, 20 pp., arXiv: 1512.04757 | DOI

[10] A. M. Belemuk, V. N. Ryzhov, “Effective Hamiltonian study of excitations in a boson-fermion mixture with attraction between components”, J. Phys. B: At. Mol. Opt. Phys., 43:22 (2010), 225301, 9 pp., arXiv: 1006.5805 | DOI

[11] J. E. Drut, J. R. McKenney, W. S. Daza, C. L. Lin, C. R. Ordóñez, “Quantum anomaly and thermodynamics of one-dimensional fermions with three-body interactions”, Phys. Rev. Lett., 120:24 (2018), 243002, 6 pp., arXiv: 1802.01634 | DOI

[12] M. Tylutki, A. Recati, F. Dalfovo, S. Stringari, “Dark-bright solitons in a superfluid Bose–Fermi mixture”, New J. Phys., 18 (2016), 053014, 9 pp. | DOI

[13] M. Antezza, F. Dalfovo, L. P. Pitaevskii, S. Stringari, “Dark solitons in a superfluid Fermi gas”, Phys. Rev. A, 76:4 (2007), 043610, 4 pp., arXiv: 0706.0601 | DOI

[14] M. Babadi, E. Demler, “Collective excitations of quasi-two-dimensional trapped dipolar fermions: Transition from collisionless to hydrodynamic regime”, Phys. Rev. A, 86:6 (2012), 063638, 26 pp., arXiv: 1209.3863 | DOI

[15] R. Roth, “Structure and stability of trapped atomic boson-fermion mixtures”, Phys. Rev. A, 66:1 (2002), 013614, 12 pp., arXiv: cond-mat/0203192 | DOI

[16] R. Roth, H. Feldmeier, “Effective $s$- and $p$-wave contact interactions in trapped degenerate Fermi gases”, Phys. Rev. A, 64:4 (2001), 043603, 17 pp., arXiv: cond-mat/0102416 | DOI

[17] M. Kulkarni, A. G. Abanov, “Hydrodynamics of cold atomic gases in the limit of weak nonlinearity, dispersion, and dissipation”, Phys. Rev. A, 86:3 (2012), 033614, 16 pp., arXiv: 1205.5917 | DOI

[18] I. Tokatly, O. Pankratov, “Hydrodynamic theory of an electron gas”, Phys. Rev. B, 60:23 (1999), 15550–15553, arXiv: cond-mat/9902316 | DOI

[19] I. Tokatly, O. Pankratov, “Hydrodynamics beyond local equilibrium: Application to electron gas”, Phys. Rev. B, 62:4 (2000), 2759–2772, arXiv: cond-mat/0005041 | DOI

[20] L. S. Kuzmenkov, S. G. Maksimov, “Kvantovaya gidrodinamika sistem chastits s kulonovskim vzaimodeistviem i kvantovyi potentsial Boma”, TMF, 118:2 (1999), 287–304 | DOI | DOI | Zbl

[21] P. A. Andreev, L. S. Kuzmenkov, “Problem with the single-particle description and the spectra of intrinsic modes of degenerate boson-fermion systems”, Phys. Rev. A, 78:5 (2008), 053624, 12 pp. | DOI

[22] P. A. Andreev, “Hydrodynamic model of a Bose–Einstein condensate with anisotropic short-range interaction and bright solitons in a repulsive Bose–Einstein condensate”, Laser Phys., 29:3 (2019), 035502 | DOI

[23] N. G. Parker, D. A. Smith, “$p$-wave stabilization of three-dimensional Bose–Fermi solitons”, Phys. Rev. A, 85:1 (2012), 013604, 9 pp., arXiv: 1108.3453 | DOI

[24] P. A. Andreev, “Spin current contribution in the spectrum of collective excitations of degenerate partially polarized spin-1/2 fermions at separate dynamics of spin-up and spin-down fermions”, Laser Phys. Lett., 15:10 (2018), 105501 | DOI

[25] P. A. Andreev, “Separated spin-up and spin-down quantum hydrodynamics of degenerated electrons: Spin-electron acoustic wave appearance”, Phys. Rev. E, 91:3 (2015), 033111, 11 pp., arXiv: 1405.0719 | DOI

[26] P. A. Andreev, “Extended hydrodynamics of degenerate partially spin polarized fermions with short-range interaction up to the third order by interaction radius approximation”, Laser Phys., 31 (2021), 045501, 28 pp. | DOI

[27] A. Csordas, R. Graham, “Collective excitations of degenerate Fermi gases in anisotropic parabolic traps”, Phys. Rev. A, 63:1 (2000), 013606, 8 pp., arXiv: cond-mat/0007049 | DOI

[28] A. Griffin, W.-C. Wu, S. Stringari, “Hydrodynamic modes in a trapped Bose gas above the Bose–Einstein transition”, Phys. Rev. Lett., 78:10 (1997), 1838–1841, arXiv: cond-mat/9610187 | DOI

[29] Z. Wang, M. Cherkasskii, B. A. Kalinikos, L. D. Carr, M. Wu, “Formation of bright solitons from wave packets with repulsive nonlinearity”, New J. Phys., 16 (2014), 053048, 10 pp. | DOI

[30] P. A. Andreev, L. S. Kuz'menkov, “Bright-like soliton solution in quasi-one-dimensional BEC in third order by interaction radius”, Modern Phys. Lett., 26:23 (2012), 1250152, arXiv: 1105.5537 | DOI

[31] H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, T. Pfau, “Observing the Rosensweig instability of a quantum ferrofluid”, Nature, 530:7589 (2016), 194–197, arXiv: 1508.05007 | DOI

[32] D. Baillie, R. M. Wilson, R. N. Bisset, P. B. Blakie, “Self-bound dipolar droplet: A localized matter-wave in free space”, Phys. Rev. A, 94:2 (2016), 021602, 5 pp., arXiv: 1606.00824 | DOI | MR

[33] A. G. Truscott, K. E. Strecker, W. I. McAlexander, G. B. Partridge, R. G. Hulet, “Observation of Fermi pressure in a gas of trapped atoms”, Science, 291:5513 (2001), 2570–2572 | DOI

[34] F. Schreck, L. Khaykovich, K. L. Corwin, G. Ferrari, T. Bourdel, J. Cubizolles, C. Salomon, “Quasipure Bose–Einstein condensate immersed in a Fermi sea”, Phys. Rev. Lett., 87:8 (2001), 080403, 4 pp. | DOI

[35] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W. Zwierlein, A. Görlitz, W. Ketterle, “Two-species mixture of quantum degenerate Bose and Fermi gases”, Phys. Rev. Lett., 88:16 (2002), 160401, 4 pp., arXiv: cond-mat/0112425 | DOI

[36] G. Roati, F. Riboli, G. Modugno, M. Inguscio, “Fermi–Bose quantum degenerate $^{40}$K–$^{87}$Rb mixture with attractive interaction”, Phys. Rev. Lett., 89:15 (2002), 150403, 4 pp., arXiv: cond-mat/0205015 | DOI