@article{TMF_2022_213_3_a7,
author = {Lingxuan Feng and Shunlong Luo},
title = {From stabilizer states to {SIC-POVM} fiducial states},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {505--522},
year = {2022},
volume = {213},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/}
}
Lingxuan Feng; Shunlong Luo. From stabilizer states to SIC-POVM fiducial states. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 505-522. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/
[1] P. W. Shor, “Fault-tolerant quantum computation”, Proceedings of the 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, USA, 14–16 October, 1996), IEEE Comput. Soc. Press, Washington, DC, USA, 1996, 56–65, arXiv: quant-ph/9605011 | DOI | MR
[2] J. Preskill, “Fault-tolerant quantum computation”, Introduction to Quantum Computation and Information, eds. H.-K. Lo, T. Spiller, S. Popescu, World Sci. Publ., River Edge, NJ, 1998, 213–269, arXiv: quant-ph/9712048 | DOI | MR
[3] D. Gottesman, Stabilizer codes and quantum error correction, Ph. D. Thesis, California Institute of Technology, Pasadena, CA, 2004, arXiv: quant-ph/9705052
[4] D. Gottesman, “The Heisenberg representation of quantum computers”, Group22: Proceedings of the XXII International Colloquium in Group Theoretical Methods in Physics (Hobart, July 13–17, 1998), eds. S. P. Corney, R. Delbourgo, P. D. Jarvis, Int. Press, Cambridge, MA, 1999, 32–43, arXiv: quant-ph/9807006 | MR
[5] D. Gottesman, I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations”, Nature, 402:6760 (1999), 390–393 | DOI
[6] X. Zhou, D. W. Leung, I. L. Chuang, “Methodology for quantum logic gate construction”, Phys. Rev. A, 62:5 (2000), 052316, 12 pp., arXiv: quant-ph/0002039 | DOI
[7] S. Aaronson, D. Gottesman, “Improved simulation of stabilizer circuits”, Phys. Rev. A, 70:5 (2004), 052328, 14 pp., arXiv: quant-ph/0406196 | DOI
[8] E. Knill, “Quantum computing with realistically noisy devices”, Nature, 434:7029 (2005), 39–44, arXiv: quant-ph/0410199 | DOI
[9] S. Bravyi, A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas”, Phys. Rev. A, 71:2 (2005), 022316, 14 pp., arXiv: quant-ph/0403025 | DOI | MR
[10] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR
[11] V. Veitch, S. A. H. Mousavian, D. Gottesman, J. Emerson, “The resource theory of stabilizer quantum computation”, New J. Phys., 16:1 (2014), 013009, 32 pp. | DOI | MR
[12] D. Andersson, I. Bengtsson, K. Blanchfield, H. B. Dang, “States that are far from being stabilizer states”, J. Phys. A: Math. Theor., 48:34 (2015), 345301, 19 pp. | DOI | MR
[13] M. Howard, E. Campbell, “Application of a resource theory for magic states to fault-tolerant quantum computing”, Phys. Rev. Lett., 118:9 (2017), 090501, 6 pp., arXiv: 1609.07488 | DOI
[14] E. Campbell, M. Howard, “Unifying gate synthesis and magic state distillation”, Phys. Rev. Lett., 118:6 (2017), 060501, 5 pp., arXiv: 1606.01906 | DOI
[15] M. Ahmadi, H. B. Dang, G. Gour, B. C. Sanders, “Quantification and manipulation of magic states”, Phys. Rev. A, 97:6 (2018), 062332, 8 pp., arXiv: 1706.03828 | DOI
[16] M. Heinrich, D. Gross, “Robustness of magic and symmetries of the stabiliser polytope”, Quantum, 3 (2019), 132, 35 pp., arXiv: 1807.10296 | DOI
[17] J. R. Seddon, E. T. Campbell, “Quantifying magic for multi-qubit operations”, Proc. Roy. Soc. A, 475:2227 (2019), 20190251, 24 pp., arXiv: 1901.03322 | DOI | MR
[18] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, M. Howard, “Simulation of quantum circuits by low-rank stabilizer decompositions”, Quantum, 3 (2019), 181, 48 pp., arXiv: 1808.00128 | DOI
[19] X. Wang, M. M. Wilde, Y. Su, “Efficiently computable bounds for magic state distillation”, Phys. Rev. Lett., 124:9 (2020), 090505, 7 pp. | DOI | MR
[20] Z.-W. Liu, A. Winter, “Many-body quantum magic”, PRX Quantum, 3:2, 020333, 18 pp., arXiv: 2010.13817 | DOI
[21] A. Heimendahl, F. Montealegre-Mora, F. Vallentin, D. Gross, “Stabilizer extent is not multiplicative”, Quantum, 5 (2021), 400, 15 pp., arXiv: 2007.04363 | DOI
[22] H. Dai, S. Fu, S. Luo, “Detecting magic states via characteristic functions”, Internat. J. Theoret. Phys., 61:2 (2022), 35, 18 pp. | DOI | MR
[23] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR
[24] G. Lüders, “Über die Zustandsänderung durch den meßprozeß”, Ann. Phys. Berlin, 443:5–8 (1950), 322–328 | DOI | MR
[25] J. A. Wheeler, W. H. Zurek, Quantum Theory and Measurement, Princeton Univ. Press, Princeton, 1983 | DOI | MR
[26] E. B. Davies, J. T. Lewis, “An operational approach to quantum probability”, Commun. Math. Phys., 17:3 (1970), 239–260 | DOI | MR
[27] C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, 123, Academic Press, New York, 1976 | Zbl
[28] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, MTsNMO, M., 2020 | MR | Zbl | Zbl
[29] K. Kraus, A. Böhm, J. D. Dollard, W. H. Wootters (eds.), States, Effects and Operations. Fundamental Notions of Quantum Theory, Lecture Notes in Physics, 190, Springer, Berlin, 1983 | DOI | MR
[30] P. Busch, M. Grabowski, P. J. Lahti, Operational Quantum Physics, Lecture Notes in Physics. New Series m: Monographs, 31, Springer, Berlin, 1995 | DOI | MR
[31] A. Peres, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics, 57, Kluwer, Dordrecht, 1993 | DOI | MR
[32] T. Heinosaari, M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR
[33] P. Busch, P. Lahti, J. P. Pellonpää, K. Ylinen, Quantum Measurement, Theoretical and Mathematical Physics, Springer, Berlin, 2016 | DOI | MR
[34] G. Zauner, “Quantum designs: foundations of a noncommutative design theory”, Int. J. Quantum Inform., 9:1 (2011), 445–507 | DOI | MR
[35] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45:6 (2004), 2171–2180, arXiv: quant-ph/0310075 | DOI | MR
[36] M. Grassl, On SIC-POVMs and MUBs in dimension 6, arXiv: quant-ph/0406175
[37] D. M. Appleby, “Symmetric informationally complete-positive operator valued measures and the extended Clifford group”, J. Math. Phys., 46:5 (2005), 052107, 29 pp., arXiv: quant-ph/0412001 | DOI | MR
[38] S. T. Flammia, “On SIC-POVMs in prime dimensions”, J. Phys. A: Math. Theor., 39:43 (2006), 13483–13493 | DOI | MR
[39] H. Zhu, “SIC POVMs and Clifford groups in prime dimensions”, J. Phys. A: Math. Theor., 43:30 (2010), 305305, 24 pp. | DOI | MR
[40] A. J. Scott, M. Grassl, “Symmetric informationally complete positive-operator-valued measures: A new computer study”, J. Math. Phys., 51:4 (2010), 042203, 16 pp. | DOI | MR
[41] D. M. Appleby, S. T. Flammia, C. A. Fuchs, “The Lie algebraic significance of symmetric informationally complete measurements”, J. Math. Phys., 52:2 (2011), 022202, 34 pp. | DOI | MR
[42] D. M. Appleby, H. B. Dang, C. A. Fuchs, “Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states”, Entropy, 16:3 (2014), 1484–1492 | DOI
[43] D. M. Appleby, C. A. Fuchs, H. Zhu, “Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem”, Quantum Inf. Comput., 15:1–2 (2015), 61–94 | DOI | MR
[44] A. J. Scott, SICs: Extending the list of solutions, arXiv: 1703.03993
[45] C. A. Fuchs, M. C. Hoang, B. C. Stacey, “The SIC question: history and state of play”, Axioms, 6:3 (2017), 21, 20 pp. | DOI
[46] M. Appleby, T.-Y. Chien, S. Flammia, S. Waldron, “Constructing exact symmetric informationally complete measurements from numerical solutions”, J. Phys. A: Math. Theor., 51:16 (2018), 165302, 40 pp., arXiv: 1703.05981 | DOI | MR
[47] J. B. DeBrota, B. C. Stacey, “Lüders channels and the existence of symmetric-informationally-complete measurements”, Phys. Rev. A, 100:6 (2019), 062327, 7 pp., arXiv: 1907.10999 | DOI
[48] J. B. DeBrota, C. A. Fuchs, B. C. Stacey, “Symmetric informationally complete measurements identify the irreducible difference between classical and quantum systems”, Phys. Rev. Res., 2:1 (2020), 013074, 9 pp. | DOI
[49] P. Horodecki, Ł. Rudnicki, K. .{Z}yczkowski, “Five open problems in quantum information theory”, PRX Quantum, 3:1 (2022), 010101, 17 pp., arXiv: 2002.03233 | DOI
[50] Y. Liu, S. Luo, “Quantifying unsharpness of measurements via uncertainty”, Phys. Rev. A, 104:5 (2021), 052227, 10 pp. | DOI | MR
[51] B. C. Stacey, A First Course in the Sporadic SICs, SpringerBriefs in Mathematical Physics, 41, Springer, Berlin, 2021 | DOI | MR
[52] C. A. Fuchs, R. Schack, “Quantum-Bayesian coherence”, Rev. Modern Phys., 85:4 (2013), 1693–1715, arXiv: 1301.3274 | DOI
[53] C. A. Fuchs, QBism, the perimeter of quantum Bayesianism, arXiv: 1003.5209
[54] M. Appleby, C. A. Fuchs, B. C. Stacey, H. Zhu, “Introducing the Qplex: A novel arena for quantum theory”, Eur. Phys. J. D, 71:7 (2017), 197, 28 pp., arXiv: 1612.03234 | DOI
[55] I. Bengtsson, “The number behind the simplest SIC-POVM”, Found. Phys., 47:8 (2017), 1031–1041, arXiv: 1611.09087 | DOI | MR
[56] M. Appleby, S. Flammia, G. McConnell, J. Yard, “SICs and algebraic number theory”, Found. Phys., 47:8 (2017), 1042–1059, arXiv: 1701.05200 | DOI | MR
[57] M. Appleby, S. Flammia, G. McConnell, J. Yard, “Generating ray class fields of real quadratic fields via complex equiangular lines”, Acta Arith., 192:3 (2020), 211–233 | DOI | MR
[58] G. S. Kopp, “SIC-POVMs and the Stark conjectures”, Int. Math. Res. Notices, 2021:18 (2021), 13812–13838 | DOI | MR
[59] D. M. Appleby, “SIC-POVMS and MUBS: Geometrical relationships in prime dimension”, AIP Conf. Proc., 1101:1 (2009), 223–232 | DOI | MR | Zbl
[60] R. Beneduci, T. J. Bullock, P. Busch, C. Carmeli, T. Heinosaari, A. Toigo, “Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures”, Phys. Rev. A, 88:3 (2013), 032312, 15 pp. | DOI
[61] D. Gross, “Hudson's theorem for finite-dimensional quantum systems”, J. Math. Phys., 47:12 (2006), 122107, 25 pp. | DOI | MR
[62] E. Lukach, Kharakteristicheskie funktsii, Nauka, M., 1998 | MR | MR | Zbl
[63] W. K. Wootters, “A Wigner-function formulation of finite-state quantum mechanics”, Ann. Phys., 176:1 (1987), 1–21 | DOI | MR
[64] U. Leonhardt, “Quantum-state tomography and discrete Wigner function”, Phys. Rev. Lett., 74:21 (1995), 4101–4105 | DOI | MR
[65] A. Luis, J. Perina, “Discrete Wigner function for finite-dimensional systems”, J. Phys. A: Math. Gen., 31:5 (1998), 1423–1441 | DOI | MR
[66] K. S. Gibbons, M. J. Hoffman, W. K. Wootters, “Discrete phase space based on finite fields”, Phys. Rev. A, 70:6 (2004), 062101, 23 pp., arXiv: quant-ph/0401155 | DOI | MR
[67] D. Gross, “Non-negative Wigner functions in prime dimensions”, Appl. Phys. B, 86:3 (2007), 367–370, arXiv: quant-ph/0702004 | DOI
[68] G. Björk, A. B. Klimov, L. L. Sánchez-Soto, “Chapter 7. The discrete Wigner function”, Prog. Optics, 51 (2008), 469–516 | DOI
[69] C. Ferrie, J. Emerson, “Framed Hilbert space: Hanging the quasi-probability pictures of quantum theory”, New. J. Phys., 11 (2009), 063040, 34 pp. | DOI
[70] C. Ferrie, “Quasi-probability representations of quantum theory with applications to quantum information science”, Rep. Prog. Phys., 74:11 (2011), 116001, 24 pp., arXiv: 1010.2701 | DOI | MR
[71] H. Zhu, “Permutation symmetry determines the discrete Wigner function”, Phys. Rev. Lett., 116:4 (2016), 040501, 5 pp., arXiv: 1504.03773 | DOI | MR
[72] J. B. DeBrota, B. C. Stacey, “Discrete Wigner functions from informationally complete quantum measurements”, Phys. Rev. A, 102:3 (2020), 032221, 11 pp., arXiv: 1912.07554 | DOI | MR
[73] L. R. Welch, “Lower bounds on the maximum cross correlation of signals”, IEEE Trans. Inform. Theory, 20:3 (1974), 397–399 | DOI
[74] J. J. Benedetto, M. Fickus, “Finite normalized tight frames”, Adv. Comput. Math., 18:2–4 (2003), 357–385 | DOI | MR
[75] T. Strohmer, R. W. Heath, Jr., “Grassmannian frames with applications to coding and communication”, Appl. Comput. Harmon. Anal., 14:3 (2003), 257–275 | DOI | MR
[76] I. Bengtsson, H. Granström, “The frame potential, on average”, Open Sys. Inf. Dyn., 16:2–3 (2009), 145–156 | DOI | MR