From stabilizer states to SIC-POVM fiducial states
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 505-522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the stabilizer formalism of quantum computation, the Gottesman–Knill theorem shows that universal fault-tolerant quantum computation requires the resource called magic (nonstabilizerness). Thus stabilizer states serve as “classical states,” and states beyond them are necessary for genuine quantum computation. Characterization, detection, and quantification of magic states are basic issues in this context. In the paradigm of quantum measurement, symmetric informationally complete positive operator valued measures (SIC-POVMs, further abbreviated as SICs) play a prominent role due to their structural symmetry and remarkable features. However, their existence in all dimensions, although strongly supported by extensive theoretical and numerical evidence, remains an elusive open problem (Zauner's conjecture). A standard method for constructing SICs is via the orbit of the Heisenberg–Weyl group on a fiducial state, and most known SICs arise in this way. A natural question arises regarding the relation between stabilizer states and fiducial states. In this paper, we connect them by showing that they are on two extremes with respect to the $p$-norms of characteristic functions of quantum states. This not only reveals a simple path from stabilizer states to SIC fiducial states, showing quantitatively that they are as far away as possible from each other, but also provides a simple reformulation of Zauner's conjecture in terms of extremals for the $p$-norms of characteristic functions. A convenient criterion for magic states and some interesting open problems are also presented.
Keywords: stabilizer states, SIC-POVMs, fiducial states, $p$-norms, Zauner's conjecture.
@article{TMF_2022_213_3_a7,
     author = {Lingxuan Feng and Shunlong Luo},
     title = {From stabilizer states to {SIC-POVM} fiducial states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--522},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/}
}
TY  - JOUR
AU  - Lingxuan Feng
AU  - Shunlong Luo
TI  - From stabilizer states to SIC-POVM fiducial states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 505
EP  - 522
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/
LA  - ru
ID  - TMF_2022_213_3_a7
ER  - 
%0 Journal Article
%A Lingxuan Feng
%A Shunlong Luo
%T From stabilizer states to SIC-POVM fiducial states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 505-522
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/
%G ru
%F TMF_2022_213_3_a7
Lingxuan Feng; Shunlong Luo. From stabilizer states to SIC-POVM fiducial states. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 505-522. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/

[1] P. W. Shor, “Fault-tolerant quantum computation”, Proceedings of the 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, USA, 14–16 October, 1996), IEEE Comput. Soc. Press, Washington, DC, USA, 1996, 56–65, arXiv: quant-ph/9605011 | DOI | MR

[2] J. Preskill, “Fault-tolerant quantum computation”, Introduction to Quantum Computation and Information, eds. H.-K. Lo, T. Spiller, S. Popescu, World Sci. Publ., River Edge, NJ, 1998, 213–269, arXiv: quant-ph/9712048 | DOI | MR

[3] D. Gottesman, Stabilizer codes and quantum error correction, Ph. D. Thesis, California Institute of Technology, Pasadena, CA, 2004, arXiv: quant-ph/9705052

[4] D. Gottesman, “The Heisenberg representation of quantum computers”, Group22: Proceedings of the XXII International Colloquium in Group Theoretical Methods in Physics (Hobart, July 13–17, 1998), eds. S. P. Corney, R. Delbourgo, P. D. Jarvis, Int. Press, Cambridge, MA, 1999, 32–43, arXiv: quant-ph/9807006 | MR

[5] D. Gottesman, I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations”, Nature, 402:6760 (1999), 390–393 | DOI

[6] X. Zhou, D. W. Leung, I. L. Chuang, “Methodology for quantum logic gate construction”, Phys. Rev. A, 62:5 (2000), 052316, 12 pp., arXiv: quant-ph/0002039 | DOI

[7] S. Aaronson, D. Gottesman, “Improved simulation of stabilizer circuits”, Phys. Rev. A, 70:5 (2004), 052328, 14 pp., arXiv: quant-ph/0406196 | DOI

[8] E. Knill, “Quantum computing with realistically noisy devices”, Nature, 434:7029 (2005), 39–44, arXiv: quant-ph/0410199 | DOI

[9] S. Bravyi, A. Kitaev, “Universal quantum computation with ideal Clifford gates and noisy ancillas”, Phys. Rev. A, 71:2 (2005), 022316, 14 pp., arXiv: quant-ph/0403025 | DOI | MR

[10] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR

[11] V. Veitch, S. A. H. Mousavian, D. Gottesman, J. Emerson, “The resource theory of stabilizer quantum computation”, New J. Phys., 16:1 (2014), 013009, 32 pp. | DOI | MR

[12] D. Andersson, I. Bengtsson, K. Blanchfield, H. B. Dang, “States that are far from being stabilizer states”, J. Phys. A: Math. Theor., 48:34 (2015), 345301, 19 pp. | DOI | MR

[13] M. Howard, E. Campbell, “Application of a resource theory for magic states to fault-tolerant quantum computing”, Phys. Rev. Lett., 118:9 (2017), 090501, 6 pp., arXiv: 1609.07488 | DOI

[14] E. Campbell, M. Howard, “Unifying gate synthesis and magic state distillation”, Phys. Rev. Lett., 118:6 (2017), 060501, 5 pp., arXiv: 1606.01906 | DOI

[15] M. Ahmadi, H. B. Dang, G. Gour, B. C. Sanders, “Quantification and manipulation of magic states”, Phys. Rev. A, 97:6 (2018), 062332, 8 pp., arXiv: 1706.03828 | DOI

[16] M. Heinrich, D. Gross, “Robustness of magic and symmetries of the stabiliser polytope”, Quantum, 3 (2019), 132, 35 pp., arXiv: 1807.10296 | DOI

[17] J. R. Seddon, E. T. Campbell, “Quantifying magic for multi-qubit operations”, Proc. Roy. Soc. A, 475:2227 (2019), 20190251, 24 pp., arXiv: 1901.03322 | DOI | MR

[18] S. Bravyi, D. Browne, P. Calpin, E. Campbell, D. Gosset, M. Howard, “Simulation of quantum circuits by low-rank stabilizer decompositions”, Quantum, 3 (2019), 181, 48 pp., arXiv: 1808.00128 | DOI

[19] X. Wang, M. M. Wilde, Y. Su, “Efficiently computable bounds for magic state distillation”, Phys. Rev. Lett., 124:9 (2020), 090505, 7 pp. | DOI | MR

[20] Z.-W. Liu, A. Winter, “Many-body quantum magic”, PRX Quantum, 3:2, 020333, 18 pp., arXiv: 2010.13817 | DOI

[21] A. Heimendahl, F. Montealegre-Mora, F. Vallentin, D. Gross, “Stabilizer extent is not multiplicative”, Quantum, 5 (2021), 400, 15 pp., arXiv: 2007.04363 | DOI

[22] H. Dai, S. Fu, S. Luo, “Detecting magic states via characteristic functions”, Internat. J. Theoret. Phys., 61:2 (2022), 35, 18 pp. | DOI | MR

[23] I. fon Neiman, Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964 | MR

[24] G. Lüders, “Über die Zustandsänderung durch den meßprozeß”, Ann. Phys. Berlin, 443:5–8 (1950), 322–328 | DOI | MR

[25] J. A. Wheeler, W. H. Zurek, Quantum Theory and Measurement, Princeton Univ. Press, Princeton, 1983 | DOI | MR

[26] E. B. Davies, J. T. Lewis, “An operational approach to quantum probability”, Commun. Math. Phys., 17:3 (1970), 239–260 | DOI | MR

[27] C. W. Helstrom, Quantum Detection and Estimation Theory, Mathematics in Science and Engineering, 123, Academic Press, New York, 1976 | Zbl

[28] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, MTsNMO, M., 2020 | MR | Zbl | Zbl

[29] K. Kraus, A. Böhm, J. D. Dollard, W. H. Wootters (eds.), States, Effects and Operations. Fundamental Notions of Quantum Theory, Lecture Notes in Physics, 190, Springer, Berlin, 1983 | DOI | MR

[30] P. Busch, M. Grabowski, P. J. Lahti, Operational Quantum Physics, Lecture Notes in Physics. New Series m: Monographs, 31, Springer, Berlin, 1995 | DOI | MR

[31] A. Peres, Quantum Theory: Concepts and Methods, Fundamental Theories of Physics, 57, Kluwer, Dordrecht, 1993 | DOI | MR

[32] T. Heinosaari, M. Ziman, The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge Univ. Press, Cambridge, 2012 | DOI | MR

[33] P. Busch, P. Lahti, J. P. Pellonpää, K. Ylinen, Quantum Measurement, Theoretical and Mathematical Physics, Springer, Berlin, 2016 | DOI | MR

[34] G. Zauner, “Quantum designs: foundations of a noncommutative design theory”, Int. J. Quantum Inform., 9:1 (2011), 445–507 | DOI | MR

[35] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys., 45:6 (2004), 2171–2180, arXiv: quant-ph/0310075 | DOI | MR

[36] M. Grassl, On SIC-POVMs and MUBs in dimension 6, arXiv: quant-ph/0406175

[37] D. M. Appleby, “Symmetric informationally complete-positive operator valued measures and the extended Clifford group”, J. Math. Phys., 46:5 (2005), 052107, 29 pp., arXiv: quant-ph/0412001 | DOI | MR

[38] S. T. Flammia, “On SIC-POVMs in prime dimensions”, J. Phys. A: Math. Theor., 39:43 (2006), 13483–13493 | DOI | MR

[39] H. Zhu, “SIC POVMs and Clifford groups in prime dimensions”, J. Phys. A: Math. Theor., 43:30 (2010), 305305, 24 pp. | DOI | MR

[40] A. J. Scott, M. Grassl, “Symmetric informationally complete positive-operator-valued measures: A new computer study”, J. Math. Phys., 51:4 (2010), 042203, 16 pp. | DOI | MR

[41] D. M. Appleby, S. T. Flammia, C. A. Fuchs, “The Lie algebraic significance of symmetric informationally complete measurements”, J. Math. Phys., 52:2 (2011), 022202, 34 pp. | DOI | MR

[42] D. M. Appleby, H. B. Dang, C. A. Fuchs, “Symmetric informationally-complete quantum states as analogues to orthonormal bases and minimum-uncertainty states”, Entropy, 16:3 (2014), 1484–1492 | DOI

[43] D. M. Appleby, C. A. Fuchs, H. Zhu, “Group theoretic, Lie algebraic and Jordan algebraic formulations of the SIC existence problem”, Quantum Inf. Comput., 15:1–2 (2015), 61–94 | DOI | MR

[44] A. J. Scott, SICs: Extending the list of solutions, arXiv: 1703.03993

[45] C. A. Fuchs, M. C. Hoang, B. C. Stacey, “The SIC question: history and state of play”, Axioms, 6:3 (2017), 21, 20 pp. | DOI

[46] M. Appleby, T.-Y. Chien, S. Flammia, S. Waldron, “Constructing exact symmetric informationally complete measurements from numerical solutions”, J. Phys. A: Math. Theor., 51:16 (2018), 165302, 40 pp., arXiv: 1703.05981 | DOI | MR

[47] J. B. DeBrota, B. C. Stacey, “Lüders channels and the existence of symmetric-informationally-complete measurements”, Phys. Rev. A, 100:6 (2019), 062327, 7 pp., arXiv: 1907.10999 | DOI

[48] J. B. DeBrota, C. A. Fuchs, B. C. Stacey, “Symmetric informationally complete measurements identify the irreducible difference between classical and quantum systems”, Phys. Rev. Res., 2:1 (2020), 013074, 9 pp. | DOI

[49] P. Horodecki, Ł. Rudnicki, K. .{Z}yczkowski, “Five open problems in quantum information theory”, PRX Quantum, 3:1 (2022), 010101, 17 pp., arXiv: 2002.03233 | DOI

[50] Y. Liu, S. Luo, “Quantifying unsharpness of measurements via uncertainty”, Phys. Rev. A, 104:5 (2021), 052227, 10 pp. | DOI | MR

[51] B. C. Stacey, A First Course in the Sporadic SICs, SpringerBriefs in Mathematical Physics, 41, Springer, Berlin, 2021 | DOI | MR

[52] C. A. Fuchs, R. Schack, “Quantum-Bayesian coherence”, Rev. Modern Phys., 85:4 (2013), 1693–1715, arXiv: 1301.3274 | DOI

[53] C. A. Fuchs, QBism, the perimeter of quantum Bayesianism, arXiv: 1003.5209

[54] M. Appleby, C. A. Fuchs, B. C. Stacey, H. Zhu, “Introducing the Qplex: A novel arena for quantum theory”, Eur. Phys. J. D, 71:7 (2017), 197, 28 pp., arXiv: 1612.03234 | DOI

[55] I. Bengtsson, “The number behind the simplest SIC-POVM”, Found. Phys., 47:8 (2017), 1031–1041, arXiv: 1611.09087 | DOI | MR

[56] M. Appleby, S. Flammia, G. McConnell, J. Yard, “SICs and algebraic number theory”, Found. Phys., 47:8 (2017), 1042–1059, arXiv: 1701.05200 | DOI | MR

[57] M. Appleby, S. Flammia, G. McConnell, J. Yard, “Generating ray class fields of real quadratic fields via complex equiangular lines”, Acta Arith., 192:3 (2020), 211–233 | DOI | MR

[58] G. S. Kopp, “SIC-POVMs and the Stark conjectures”, Int. Math. Res. Notices, 2021:18 (2021), 13812–13838 | DOI | MR

[59] D. M. Appleby, “SIC-POVMS and MUBS: Geometrical relationships in prime dimension”, AIP Conf. Proc., 1101:1 (2009), 223–232 | DOI | MR | Zbl

[60] R. Beneduci, T. J. Bullock, P. Busch, C. Carmeli, T. Heinosaari, A. Toigo, “Operational link between mutually unbiased bases and symmetric informationally complete positive operator-valued measures”, Phys. Rev. A, 88:3 (2013), 032312, 15 pp. | DOI

[61] D. Gross, “Hudson's theorem for finite-dimensional quantum systems”, J. Math. Phys., 47:12 (2006), 122107, 25 pp. | DOI | MR

[62] E. Lukach, Kharakteristicheskie funktsii, Nauka, M., 1998 | MR | MR | Zbl

[63] W. K. Wootters, “A Wigner-function formulation of finite-state quantum mechanics”, Ann. Phys., 176:1 (1987), 1–21 | DOI | MR

[64] U. Leonhardt, “Quantum-state tomography and discrete Wigner function”, Phys. Rev. Lett., 74:21 (1995), 4101–4105 | DOI | MR

[65] A. Luis, J. Perina, “Discrete Wigner function for finite-dimensional systems”, J. Phys. A: Math. Gen., 31:5 (1998), 1423–1441 | DOI | MR

[66] K. S. Gibbons, M. J. Hoffman, W. K. Wootters, “Discrete phase space based on finite fields”, Phys. Rev. A, 70:6 (2004), 062101, 23 pp., arXiv: quant-ph/0401155 | DOI | MR

[67] D. Gross, “Non-negative Wigner functions in prime dimensions”, Appl. Phys. B, 86:3 (2007), 367–370, arXiv: quant-ph/0702004 | DOI

[68] G. Björk, A. B. Klimov, L. L. Sánchez-Soto, “Chapter 7. The discrete Wigner function”, Prog. Optics, 51 (2008), 469–516 | DOI

[69] C. Ferrie, J. Emerson, “Framed Hilbert space: Hanging the quasi-probability pictures of quantum theory”, New. J. Phys., 11 (2009), 063040, 34 pp. | DOI

[70] C. Ferrie, “Quasi-probability representations of quantum theory with applications to quantum information science”, Rep. Prog. Phys., 74:11 (2011), 116001, 24 pp., arXiv: 1010.2701 | DOI | MR

[71] H. Zhu, “Permutation symmetry determines the discrete Wigner function”, Phys. Rev. Lett., 116:4 (2016), 040501, 5 pp., arXiv: 1504.03773 | DOI | MR

[72] J. B. DeBrota, B. C. Stacey, “Discrete Wigner functions from informationally complete quantum measurements”, Phys. Rev. A, 102:3 (2020), 032221, 11 pp., arXiv: 1912.07554 | DOI | MR

[73] L. R. Welch, “Lower bounds on the maximum cross correlation of signals”, IEEE Trans. Inform. Theory, 20:3 (1974), 397–399 | DOI

[74] J. J. Benedetto, M. Fickus, “Finite normalized tight frames”, Adv. Comput. Math., 18:2–4 (2003), 357–385 | DOI | MR

[75] T. Strohmer, R. W. Heath, Jr., “Grassmannian frames with applications to coding and communication”, Appl. Comput. Harmon. Anal., 14:3 (2003), 257–275 | DOI | MR

[76] I. Bengtsson, H. Granström, “The frame potential, on average”, Open Sys. Inf. Dyn., 16:2–3 (2009), 145–156 | DOI | MR