From stabilizer states to SIC-POVM fiducial states
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 505-522

Voir la notice de l'article provenant de la source Math-Net.Ru

In the stabilizer formalism of quantum computation, the Gottesman–Knill theorem shows that universal fault-tolerant quantum computation requires the resource called magic (nonstabilizerness). Thus stabilizer states serve as “classical states,” and states beyond them are necessary for genuine quantum computation. Characterization, detection, and quantification of magic states are basic issues in this context. In the paradigm of quantum measurement, symmetric informationally complete positive operator valued measures (SIC-POVMs, further abbreviated as SICs) play a prominent role due to their structural symmetry and remarkable features. However, their existence in all dimensions, although strongly supported by extensive theoretical and numerical evidence, remains an elusive open problem (Zauner's conjecture). A standard method for constructing SICs is via the orbit of the Heisenberg–Weyl group on a fiducial state, and most known SICs arise in this way. A natural question arises regarding the relation between stabilizer states and fiducial states. In this paper, we connect them by showing that they are on two extremes with respect to the $p$-norms of characteristic functions of quantum states. This not only reveals a simple path from stabilizer states to SIC fiducial states, showing quantitatively that they are as far away as possible from each other, but also provides a simple reformulation of Zauner's conjecture in terms of extremals for the $p$-norms of characteristic functions. A convenient criterion for magic states and some interesting open problems are also presented.
Keywords: stabilizer states, SIC-POVMs, fiducial states, $p$-norms, Zauner's conjecture.
@article{TMF_2022_213_3_a7,
     author = {Lingxuan Feng and Shunlong Luo},
     title = {From stabilizer states to {SIC-POVM} fiducial states},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--522},
     publisher = {mathdoc},
     volume = {213},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/}
}
TY  - JOUR
AU  - Lingxuan Feng
AU  - Shunlong Luo
TI  - From stabilizer states to SIC-POVM fiducial states
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 505
EP  - 522
VL  - 213
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/
LA  - ru
ID  - TMF_2022_213_3_a7
ER  - 
%0 Journal Article
%A Lingxuan Feng
%A Shunlong Luo
%T From stabilizer states to SIC-POVM fiducial states
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 505-522
%V 213
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/
%G ru
%F TMF_2022_213_3_a7
Lingxuan Feng; Shunlong Luo. From stabilizer states to SIC-POVM fiducial states. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 505-522. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a7/