@article{TMF_2022_213_3_a5,
author = {G. Rajpoot and K. Kumari and S. Joshi and S. R. Jain},
title = {Green{\textendash}Kubo formula for electrical conductivity of a~driven $0$ {\textendash} $\pi$ qubit},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {482--494},
year = {2022},
volume = {213},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/}
}
TY - JOUR AU - G. Rajpoot AU - K. Kumari AU - S. Joshi AU - S. R. Jain TI - Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 482 EP - 494 VL - 213 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/ LA - ru ID - TMF_2022_213_3_a5 ER -
%0 Journal Article %A G. Rajpoot %A K. Kumari %A S. Joshi %A S. R. Jain %T Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 482-494 %V 213 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/ %G ru %F TMF_2022_213_3_a5
G. Rajpoot; K. Kumari; S. Joshi; S. R. Jain. Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 482-494. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/
[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, R. J. Schoelkopf, “Introduction to quantum noise, measurement, and amplification”, Rev. Modern Phys., 82:2 (2010), 1155–1208 | DOI | MR
[2] P. W. Shor, “Fault-tolerant quantum computation”, Proceedings of 37th Conference on Foundations of Computer Science (Burlington, VT, USA, 14–16 October, 1996), Los Alamitos, CA, 1996, 56–65, arXiv: quant-ph/9605011 | DOI | MR
[3] A. Kitaev, A. Shen, M. Vyalyi, Klassicheskie i kvantovye vychisleniya, Izd-vo RKhD, Izhevsk, 2004 | DOI | MR | Zbl
[4] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, X. Yuan, “Quantum computational chemistry”, Rev. Modern Phys., 92:1 (2020), 015003, 51 pp. | DOI | MR
[5] S. Jain, R. Sehgal, R. V. Jayaram, “Quantum computation – a sign of quantum supremacy”, Bombay Technologist, 68:1 (2021), 6 pp. | DOI
[6] R. Kubo, “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–586 | DOI | MR
[7] J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics, 14, Cambridge Univ. Press, Cambridge, 1999 | MR
[8] E. Helfand, “Transport coefficients from dissipation in a canonical ensemble”, Phys. Rev., 119:1 (1960), 1–9 | DOI | MR
[9] P. C. Martin, Measurements and Correlation Functions, Gordon and Breach, New York, 1968
[10] D. A. McQuarrie, Statistical Mechanics, Harper Row, New York, 1976
[11] X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford Univ. Press, Oxford, 2004
[12] A. Kitaev, Protected qubit based on a superconducting current mirror, arXiv: cond-mat/0609441
[13] S. R. Jain, A. K. Pati, “Adiabatic geometric phases and response functions”, Phys. Rev. Lett., 80:4 (1998), 650–653, arXiv: chao-dyn/9804037 | DOI | MR
[14] P. Brooks, A. Kitaev, J. Preskill, “Protected gates for superconducting qubits”, Phys. Rev. A, 87:5 (2013), 052306, 26 pp., arXiv: 1302.4122 | DOI
[15] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, W. D. Oliver, “A quantum engineer's guide to superconducting qubits”, Appl. Phys. Rev., 6:2 (2019), 021318, 57 pp. | DOI
[16] R. K. Saini, R. Sehgal, S. R. Jain, “Protection of qubits by nonlinear resonances”, Eur. Phys. J. Plus, 137:3 (2022), 356, arXiv: 2011.10329 | DOI
[17] A. J. Lichtenberg, M. A. Lieberman, Regular and Stochastic Motion, Applied Mathematical Sciences, 38, Springer, New York, 1983 | DOI | MR
[18] S. R. Jain, R. Samajdar, “Nodal portraits of quantum billiards: Domains, lines, and statistics”, Rev. Modern Phys., 89:4 (2017), 045005, 66 pp., arXiv: 1709.03650 | DOI | MR
[19] N. Wax (ed.), Selected Papers on Noise and Stochastic Processes, Dover, New York, 2017
[20] J. M. Dempster, B. Fu, D. G. Ferguson, D. I. Schuster, J. Koch, “Understanding degenerate ground states of a protected quantum circuit in the presence of disorder”, Phys. Rev. B, 90:9 (2014), 094518, 12 pp., arXiv: 1402.7310 | DOI
[21] G. Rajpoot, K. Kumari, S. Joshi, S. R. Jain, “The tunable $0$ – $\pi$ qubit: Dynamics and relaxation”, Internat. J. Quantum Inf., 20:1 (2022), 2150032, 19 pp. | DOI | MR
[22] X. You, J. A. Sauls, J. Koch, “Circuit quantization in the presence of time-dependent external flux”, Phys. Rev. B, 99:17 (2019), 174512, 10 pp., arXiv: 1902.04734 | DOI
[23] M. H. Devoret, “Quantum fluctuations in electrical circuits”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches Summer School, Session LXIII (Les Houches, France, June 27 – July 28, 1995), eds. S. Reynaud, E. Giacobino, J. Zinn-Justin, Elsevier, Amsterdam, 1996, 351–386 | MR
[24] U. Vool, M. Devoret, “Introduction to quantum electromagnetic circuits”, Internat. J. Circuit Theory Appl., 45:7 (2017), 897–934 | DOI
[25] D. K. Weiss, A. C. Y. Li, D. G. Ferguson, J. Koch, “Spectrum and coherence properties of the current-mirror qubit”, Phys. Rev. B, 100:22 (2019), 224507, 17 pp., arXiv: 1908.04615 | DOI
[26] D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective, Univ. Sci. Books, Sausilito, CA, 2007 | DOI