Green–Kubo formula for electrical conductivity of a driven $0$$\pi$ qubit
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 482-494 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the most important paradigms of quantum computation rests on employing the Cooper pair condensate states in a Josephson junction. In using these, the configuration of great current interest is the $0$$\pi$ qubit. We present the linear response of this to an external drive by solving the Liouville equation for the phase-space distribution function. Thus, we obtain “Ohm's law” or the expression for electrical conductivity for this system in terms of novel correlation functions. This general result has been tested for the $0$$\pi$ qubit parameters that are used in recent experiments.
Keywords: circuit quantum electrodynamics, linear response, topological protection.
@article{TMF_2022_213_3_a5,
     author = {G. Rajpoot and K. Kumari and S. Joshi and S. R. Jain},
     title = {Green{\textendash}Kubo formula for electrical conductivity of a~driven $0$ {\textendash} $\pi$ qubit},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--494},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/}
}
TY  - JOUR
AU  - G. Rajpoot
AU  - K. Kumari
AU  - S. Joshi
AU  - S. R. Jain
TI  - Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 482
EP  - 494
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/
LA  - ru
ID  - TMF_2022_213_3_a5
ER  - 
%0 Journal Article
%A G. Rajpoot
%A K. Kumari
%A S. Joshi
%A S. R. Jain
%T Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 482-494
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/
%G ru
%F TMF_2022_213_3_a5
G. Rajpoot; K. Kumari; S. Joshi; S. R. Jain. Green–Kubo formula for electrical conductivity of a driven $0$ – $\pi$ qubit. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 482-494. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a5/

[1] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, R. J. Schoelkopf, “Introduction to quantum noise, measurement, and amplification”, Rev. Modern Phys., 82:2 (2010), 1155–1208 | DOI | MR

[2] P. W. Shor, “Fault-tolerant quantum computation”, Proceedings of 37th Conference on Foundations of Computer Science (Burlington, VT, USA, 14–16 October, 1996), Los Alamitos, CA, 1996, 56–65, arXiv: quant-ph/9605011 | DOI | MR

[3] A. Kitaev, A. Shen, M. Vyalyi, Klassicheskie i kvantovye vychisleniya, Izd-vo RKhD, Izhevsk, 2004 | DOI | MR | Zbl

[4] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, X. Yuan, “Quantum computational chemistry”, Rev. Modern Phys., 92:1 (2020), 015003, 51 pp. | DOI | MR

[5] S. Jain, R. Sehgal, R. V. Jayaram, “Quantum computation – a sign of quantum supremacy”, Bombay Technologist, 68:1 (2021), 6 pp. | DOI

[6] R. Kubo, “Statistical-mechanical theory of irreversible processes. I: General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–586 | DOI | MR

[7] J. R. Dorfman, An Introduction to Chaos in Nonequilibrium Statistical Mechanics, Cambridge Lecture Notes in Physics, 14, Cambridge Univ. Press, Cambridge, 1999 | MR

[8] E. Helfand, “Transport coefficients from dissipation in a canonical ensemble”, Phys. Rev., 119:1 (1960), 1–9 | DOI | MR

[9] P. C. Martin, Measurements and Correlation Functions, Gordon and Breach, New York, 1968

[10] D. A. McQuarrie, Statistical Mechanics, Harper Row, New York, 1976

[11] X.-G. Wen, Quantum Field Theory of Many-Body Systems, Oxford Univ. Press, Oxford, 2004

[12] A. Kitaev, Protected qubit based on a superconducting current mirror, arXiv: cond-mat/0609441

[13] S. R. Jain, A. K. Pati, “Adiabatic geometric phases and response functions”, Phys. Rev. Lett., 80:4 (1998), 650–653, arXiv: chao-dyn/9804037 | DOI | MR

[14] P. Brooks, A. Kitaev, J. Preskill, “Protected gates for superconducting qubits”, Phys. Rev. A, 87:5 (2013), 052306, 26 pp., arXiv: 1302.4122 | DOI

[15] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, W. D. Oliver, “A quantum engineer's guide to superconducting qubits”, Appl. Phys. Rev., 6:2 (2019), 021318, 57 pp. | DOI

[16] R. K. Saini, R. Sehgal, S. R. Jain, “Protection of qubits by nonlinear resonances”, Eur. Phys. J. Plus, 137:3 (2022), 356, arXiv: 2011.10329 | DOI

[17] A. J. Lichtenberg, M. A. Lieberman, Regular and Stochastic Motion, Applied Mathematical Sciences, 38, Springer, New York, 1983 | DOI | MR

[18] S. R. Jain, R. Samajdar, “Nodal portraits of quantum billiards: Domains, lines, and statistics”, Rev. Modern Phys., 89:4 (2017), 045005, 66 pp., arXiv: 1709.03650 | DOI | MR

[19] N. Wax (ed.), Selected Papers on Noise and Stochastic Processes, Dover, New York, 2017

[20] J. M. Dempster, B. Fu, D. G. Ferguson, D. I. Schuster, J. Koch, “Understanding degenerate ground states of a protected quantum circuit in the presence of disorder”, Phys. Rev. B, 90:9 (2014), 094518, 12 pp., arXiv: 1402.7310 | DOI

[21] G. Rajpoot, K. Kumari, S. Joshi, S. R. Jain, “The tunable $0$ – $\pi$ qubit: Dynamics and relaxation”, Internat. J. Quantum Inf., 20:1 (2022), 2150032, 19 pp. | DOI | MR

[22] X. You, J. A. Sauls, J. Koch, “Circuit quantization in the presence of time-dependent external flux”, Phys. Rev. B, 99:17 (2019), 174512, 10 pp., arXiv: 1902.04734 | DOI

[23] M. H. Devoret, “Quantum fluctuations in electrical circuits”, Symmétries quantiques [Quantum Symmetries], Proceedings of the Les Houches Summer School, Session LXIII (Les Houches, France, June 27 – July 28, 1995), eds. S. Reynaud, E. Giacobino, J. Zinn-Justin, Elsevier, Amsterdam, 1996, 351–386 | MR

[24] U. Vool, M. Devoret, “Introduction to quantum electromagnetic circuits”, Internat. J. Circuit Theory Appl., 45:7 (2017), 897–934 | DOI

[25] D. K. Weiss, A. C. Y. Li, D. G. Ferguson, J. Koch, “Spectrum and coherence properties of the current-mirror qubit”, Phys. Rev. B, 100:22 (2019), 224507, 17 pp., arXiv: 1908.04615 | DOI

[26] D. J. Tannor, Introduction to Quantum Mechanics: A Time-Dependent Perspective, Univ. Sci. Books, Sausilito, CA, 2007 | DOI