On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 450-458 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the difference Schrödinger operator on a line with a periodic, possibly complex, potential. We show that this operator has no eigenvalues. The proof is based on the use of the notion of Bloch solutions introduced by Buslaev and Fedotov for difference equations on a line.
Keywords: Schrödinger operator, difference equation on a line, periodic potential, eigenvalues.
@article{TMF_2022_213_3_a3,
     author = {A. A. Fedotov},
     title = {On the~absence of eigenvalues of the~difference {Schr\"odinger} operator on a~line with a~periodic potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {450--458},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a3/}
}
TY  - JOUR
AU  - A. A. Fedotov
TI  - On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 450
EP  - 458
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a3/
LA  - ru
ID  - TMF_2022_213_3_a3
ER  - 
%0 Journal Article
%A A. A. Fedotov
%T On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 450-458
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a3/
%G ru
%F TMF_2022_213_3_a3
A. A. Fedotov. On the absence of eigenvalues of the difference Schrödinger operator on a line with a periodic potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 450-458. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a3/

[1] M. Wilkinson, “An exact renormalisation group for Bloch electrons in a magnetic field”, J. Phys. A: Math. Gen., 20:13 (1987), 4337–4354 | DOI

[2] J. P. Guillement, B. Helffer, P. Treton, “Walk inside Hofstadter's butterfly”, J. Phys. France, 50:15 (1989), 2019–2058 | DOI

[3] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[4] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR | MR

[5] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR | MR | Zbl

[6] L. Pastur, A. Figotin, Spectra of Random and Almost-periodic Operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 297, Springer, Berlin, 1992 | MR

[7] D. I. Borisov, A. A. Fedotov, “O spektre nesamosopryazhennogo kvaziperiodicheskogo operatora”, Dokl. RAN. Matem., inform., prots. upr., 501 (2021), 16–21 | DOI | DOI | Zbl

[8] S. Longhi, “Topological phase transition in non-Hermitian quasicrystals”, Phys. Rev. Lett., 122:23 (2019), 237601, 7 pp., arXiv: 1905.09460 | DOI

[9] Tong Liu, Xu Xia, “Real-complex transition driven by quasiperiodicity: A class of non-PT symmetric models”, Phys. Rev. B, 105:5 (2022), 054201, 5 pp. | DOI

[10] V. S. Buslaev, A. A. Fedotov, “Blokhovskie resheniya dlya raznostnykh uravnenii”, Algebra i analiz, 7:4 (1995), 74–122 | MR | Zbl

[11] A. A. Fedotov, “Metod monodromizatsii v teorii pochti-periodicheskikh uravnenii”, Algebra i analiz, 25:2 (2013), 203–235 | DOI | MR | Zbl

[12] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR