Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 437-449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a direct method, the Cauchy matrix approach, to construct matrix solutions of noncommutative soliton equations. This approach is based on the Sylvester equation, and solutions can be presented without using quasideterminants. The matrix Kadomtsev–Petviashvili equation with self-consistent sources is employed as an example to demonstrate the approach. As a reduction, explicit solutions of the matrix Mel'nikov model for long–short wave interaction are obtained.
Keywords: self-consistent source, noncommutativity, Mel'nikov model, Cauchy matrix approach, integrable system.
@article{TMF_2022_213_3_a2,
     author = {Zhihao Shi and Shangshuai Li and Da-jun Zhang},
     title = {Cauchy matrix approach to the~noncommutative {Kadomtsev{\textendash}Petviashvili} equation with self-consistent sources},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {437--449},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a2/}
}
TY  - JOUR
AU  - Zhihao Shi
AU  - Shangshuai Li
AU  - Da-jun Zhang
TI  - Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 437
EP  - 449
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a2/
LA  - ru
ID  - TMF_2022_213_3_a2
ER  - 
%0 Journal Article
%A Zhihao Shi
%A Shangshuai Li
%A Da-jun Zhang
%T Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 437-449
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a2/
%G ru
%F TMF_2022_213_3_a2
Zhihao Shi; Shangshuai Li; Da-jun Zhang. Cauchy matrix approach to the noncommutative Kadomtsev–Petviashvili equation with self-consistent sources. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 437-449. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a2/

[1] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[2] A. de Goursac, J.-C. Wallet, R. Wulkenhaar, “Noncommutative induced gauge theory”, Eur. Phys. J. C, 51:4 (2007), 977–987, arXiv: hep-th/0703075 | DOI | MR

[3] N. Seiberg, E. Witten, “String theory and noncommutative geometry”, JHEP, 1999:9 (1999), 032, 93 pp. | DOI | MR

[4] H. Grosse, M. Wohlgenannt, “Induced gauge theory on a noncommutative space”, Eur. Phys. J. C, 52:2 (2007), 435–450, arXiv: hep-th/0703169 | DOI | MR

[5] B. Jučo, L. Möller, S. Schraml, P. Schupp, J. Wess, “Construction of non-Abelian gauge theories on noncommutative spaces”, Eur. Phys. J. C, 21:2 (2001), 383–388, arXiv: hep-th/0104153 | DOI | MR

[6] A. Connes, M. R. Douglas, A. Schwarz, “Noncommutative geometry and matrix theory: compactification on tori”, JHEP, 1998:2 (1998), 003, 35 pp. | DOI | MR

[7] J. A. Harvey, P. Kraus, F. Larsen, E. J. Martinec, “D-branes and strings as non-commutative solitons”, JHEP, 2000:7 (2000), 042, 29 pp. | DOI | MR

[8] N. Nekrasov, A. Schwarz, “Instantons on noncommutative $\mathbb R^4$, and $(2,0)$ superconformal six dimensional theory”, Commun. Math. Phys., 198:3 (1998), 689–703, arXiv: hep-th/9802068 | DOI | MR

[9] M. Hamanaka, K. Toda, “Towards noncommutative integrable systems”, Phys. Lett. A, 316:1–2 (2002), 77–83, arXiv: hep-th/0211148 | DOI | MR

[10] K. Takasaki, “Anti-self-dual Yang–Mills equations on noncommutative space-time”, J. Geom. Phys., 37:4 (2001), 291–306, arXiv: hep-th/0005194 | DOI | MR

[11] C. A. Labelle, P. Mathieu, “A new $N=2$ supersymmetric Korteweg–de Vries equation”, J. Math. Phys., 32:4 (1991), 923–927 | DOI | MR

[12] Q. P. Liu, “Darboux transformations for the supersymmetric Korteweg–de Vries equations”, Lett. Math. Phys., 35:2 (1995), 115–122, arXiv: hep-th/9409008 | DOI | MR

[13] Q. P. Liu, M. Mañas, “Darboux transformations for super-symmetric KP hierarchies”, Phys. Lett. B, 485:1–3 (2000), 293–300, arXiv: solv-int/9909016 | DOI | MR

[14] Y. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR

[15] W. Oevel, Z. Popowicz, “The bi-Hamiltonian structure of fully supersymmetric Korteweg–de Vries systems”, Commun. Math. Phys., 139:3 (1991), 441–460 | DOI | MR

[16] Z. Popowicz, “The Lax formulation of the new $N=2$ SUSY KdV equation”, Phys. Lett. A, 174:5–6 (1993), 411–415 | DOI | MR

[17] A. Dimakis, F. Müller-Hoissen, “Dispersionless limit of the noncommutative potential KP hierarchy and solutions of the pseudodual chiral model in $2+1$ dimensions”, J. Phys. A: Math. Theor., 41:26 (2008), 265203, 33 pp., arXiv: 0706.1373 | DOI | MR

[18] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: 0711.3733 | DOI | MR

[19] K. R. Gilson, D. K. Nimmo, K. M. Suman, “Matrichnye resheniya nekommutativnogo uravneniya KP i nekommutativnogo uravneniya mKP”, TMF, 159:3 (2009), 448–458 | DOI | DOI | MR | Zbl

[20] C. X. Li, J. J. C. Nimmo, “A non-commutative semi-discrete Toda equation and its quasi-determinant solutions”, Glasg. Math. J., 51:A (2009), 121–127 | DOI | MR

[21] C. X. Li, J. J. C. Nimmo, K. M. Tamizhmani, “On solutions to the non-Abelian Hirota–Miwa equation and its continuum limits”, Proc. Roy. Soc. London Ser. A, 465:2105 (2009), 1441–1451 | DOI | MR

[22] X.-M. Zhu, D.-J. Zhang, C.-X. Li, “Quasideterminant solutions of a noncommutative nonisospectral Kadomtsev–Petviashvili equation”, Commun. Theor. Phys., 55:5 (2011), 753–759 | DOI | MR

[23] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR

[24] F. W. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR

[25] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation,”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR

[26] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR

[27] V. D. Djordjević, L. G. Redekopp, “On two-dimensional packets of capillary-gravity waves”, J. Fluid Mech., 79:4 (1977), 703–710 | DOI | MR

[28] N. Yajima, M. Oikawa, “Formation and interaction of sonic-Langmuir solitons”, Progr. Theor. Phys., 56:6 (1976), 1719–1739 | DOI | MR

[29] V. K. Mel'nikov, “A direct method for deriving a multi-soliton solution for the problem of interaction of waves on the $x,y$ plane”, Commun. Math. Phys., 112:4 (1987), 639–652 | DOI | MR

[30] R. M. Li, X. G. Geng, “On a vector long wave-short wave-type model”, Stud. Appl. Math., 144:2 (2020), 164–184 | DOI | MR

[31] R. M. Li, X. G. Geng, “A matrix Yajima–Oikawa long-wave-short-wave resonance equation, Darboux transformations and rogue wave solutions”, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105408, 15 pp. | DOI | MR

[32] Y. B. Zeng, W.-X. Ma, R. L. Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR

[33] R. L. Lin, Y. B. Zeng, W.-X. Ma, “Solving the KdV hierarchy with self-consistent sources by inverse scattering method”, Phys. A, 291:1–4 (2001), 287–298 | DOI | MR

[34] D.-J. Zhang, “The $N$-soliton solutions for the modified KdV equation with self-consistent sources”, J. Phys. Soc. Japan, 71:11 (2002), 2649–2656 | DOI | MR

[35] D.-J. Zhang, “The $N$-soliton solutions of some soliton equations with self-consistent sources”, Chaos Solitons Fractals, 18:1 (2003), 31–43 | DOI | MR

[36] D.-J. Zhang, J.-B. Bi, H.-H. Hao, “A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics”, J. Phys. A: Math. Gen., 39:47 (2006), 14627–14648 | DOI | MR

[37] D.-J. Zhang, H. Wu, “Scattering of solitons of the modified KdV equation with self-consistent sources”, Commun. Theor. Phys., 49:4 (2008), 809–814 | DOI

[38] H.-J. Tian, D.-J. Zhang, “Cauchy matrix approach to integrable equations with self-consistent sources and the Yajima–Oikawa system”, Appl. Math. Lett., 103 (2019), 106165, 7 pp. | DOI | MR

[39] H.-J. Tian, D.-J. Zhang, “Cauchy matrix structure of the Mel'nikov model of long-short wave interaction”, Commun. Theor. Phys., 72:12 (2020), 125006, 11 pp. | DOI | MR