Accommodation factors and mechanisms for the destruction of carbon- and ceramics-based composite materials
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 555-578 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present results of theoretical studies of the mechanism for the destruction of heat-resisting composite materials. We study processes caused by the interaction of oxygen atoms and molecules with silicon dioxide and silicon-dioxide-based materials with the inclusion of chemical processes in the intermediate layer between the gas and the composite material surface in rarefied media. We show that the destruction mechanism depends on the catalytic activity controlling the dynamics of various physicochemical processes with the participation of O and O$_2$ on the surface. We obtain the resulting characteristics of the destruction of glassy materials, which are determined by the action of two mutually converse processes to some extent. We analyze the main regularities of the destruction of glassy materials. We show that the recombination rate depends significantly on the enthalpy of the gas flow stopping. Numerical calculation results show that the process of nonequilibrium mass carryover can be calculated using the engineering approach.
Keywords: heat flow, fritting, mass carryover, heat conduction, gas.
Mots-clés : liquid
@article{TMF_2022_213_3_a10,
     author = {N. I. Sidnyaev},
     title = {Accommodation factors and mechanisms for the~destruction of carbon- and ceramics-based composite materials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {555--578},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a10/}
}
TY  - JOUR
AU  - N. I. Sidnyaev
TI  - Accommodation factors and mechanisms for the destruction of carbon- and ceramics-based composite materials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 555
EP  - 578
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a10/
LA  - ru
ID  - TMF_2022_213_3_a10
ER  - 
%0 Journal Article
%A N. I. Sidnyaev
%T Accommodation factors and mechanisms for the destruction of carbon- and ceramics-based composite materials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 555-578
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a10/
%G ru
%F TMF_2022_213_3_a10
N. I. Sidnyaev. Accommodation factors and mechanisms for the destruction of carbon- and ceramics-based composite materials. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 555-578. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a10/

[1] N. I. Sidnyaev, “Obzor metodik issledovaniya obtekaniya giperzvukovym potokom gaza tel s razrushayuschimsya pokrytiem”, Teplofizika i aeromekhanika, 11:4 (2004), 501–522

[2] O. E. Gerasimova, S. F. Borisov, “Issledovanie rekombinatsii atomov kisloroda na poverkhnosti dioksida kremniya metodom molekulyarnoi dinamiki”, Fiziko-khimicheskaya kinetika v gazovoi dinamike, 5 (2007), 10 pp.

[3] N. I. Sidnyaev, Obtekanie giperzvukovykh letatelnykh apparatov v usloviyakh poverkhnostnogo razrusheniya, Fizmatlit, M., 2017

[4] N. I. Sidnyaev, E. V. Belkina, “O vliyanii giperzvukovogo potoka na skorost oplavleniya teplozaschitnoi poverkhnosti v usloviyakh razrusheniya”, Novye ogneupory, 1 (2020), 20–27 | DOI

[5] V. V. Gorskii, Yu. V. Polezhaev, “Teplo- i massobmen na poverkhnosti steklografitovykh materialov v vysokotemperaturnom gazovom potoke”, Izv. RAN. MZhG, 6 (1972), 71–87 | DOI

[6] N. I. Sidnyaev, “Eksperimentalnoe issledovanie vliyaniya massoobmena na aerodinamicheskie kharakteristiki tela vrascheniya slozhnoi formy”, Izv. vuzov. Aviatsionnaya tekhnika, 2 (2005), 25–29

[7] N. I. Sidnyaev, “Issledovanie aerodinamicheskikh kharakteristik tel vrascheniya s pronitsaemym nakonechnikom pri obtekanii giperzvukovym potokom”, PMTF, 48:2 (2007), 19–26 | DOI

[8] V. V. Gorskii, A. V. Zaprivoda, “O primenenii polnoi termokhimicheskoi modeli razrusheniya ugleroda k zadache razrusheniya ugleplastika v usloviyakh nestatsionarnogo nagreva”, TVT, 52:2 (2014), 240–245 | DOI | DOI

[9] A. M. Grishin, A. D. Parashin, A. S. Yakimov, “Termokhimicheskoe razrushenie ugleplastika pri mnogokratnom impulsnom nagruzhenii”, Fizika goreniya i vzryva, 29:1 (1993), 87–95 | DOI

[10] N. I. Sidnyaev, “Chislennoe reshenie zadachi ob istechenii gaza iz zamknutogo ob'ema v atmosferu”, Pisma v ZhTF, 31:1 (2005), 17–23 | DOI

[11] A. G. Gofman, A. M. Grishin, “Teoreticheskoe issledovanie termokhimicheskogo razrusheniya grafita v vysokoentalpiinom vozdukhe”, PMTF, 4 (1984), 107–114

[12] R. L. Beiker, “Vliyanie neravnovesnykh khimicheskikh protsessov na sublimatsiyu grafita”, Raketnaya tekhnika i kosmonavtika, 15:10 (1977), 21–29

[13] R. N. Gubta, J. M. Yos, R. A. Thompson, K.-P. Lee, “A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K”, Technical Report NASA-RP-1232, NASA Langley Research Center, Hampton, VA, 1990, 6–17

[14] A. Anna, I. D. Boyd, V. Colombo, E. Ghedini, P. Sanibondi, M. Boselli, M. Gherardi, “Computational modeling of surface catalysis for graphite exposed to high-enthalpy nitrogen flow”, NATO AVT-199/RSM-029, 2012, 5–12

[15] N. I. Sidnyaev, “Issledovanie teploobmena v pogranichnom sloe pri obtekanii azotom kataliticheskoi grafitovoi stenki”, Teplofizika i aeromekhanika, 27:2(122) (2020), 201–212

[16] N. I. Sidnyaev, “Issledovanie raspredeleniya davleniya po poverkhnosti kombinirovannykh tel pri obtekanii giperzvukovym potokom”, Pisma v ZhTF, 32:13 (2006), 19–25 | DOI

[17] N. I. Sidnyaev, “Issledovanie vliyaniya teplomassoperenosa sfericheskogo nakonechnika na sverkhzvukovoe obtekanie kombinirovannogo tela vrascheniya”, Izv. vuzov. Aviatsionnaya tekhnika, 2 (2006), 32–36

[18] N. I. Sidnyaev, “Studies of heat and mass transfer for hypersonic flow past a complex body of revolution”, Thermophys. Aeromech., 13:1 (2006), 17–27 | DOI