Mots-clés : solitons, "dressing" technique
@article{TMF_2022_213_3_a1,
author = {A. A. Raskovalov and A. A. Gelash},
title = {Resonanse interaction of breathers in {the~Manakov} system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {418--436},
year = {2022},
volume = {213},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/}
}
A. A. Raskovalov; A. A. Gelash. Resonanse interaction of breathers in the Manakov system. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 418-436. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/
[1] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, PMTF, 1968, no. 2, 86–94 | DOI
[2] N. N. Akhmediev, A. Ankevich, Dissipativnye solitony, Fizmatlit, 2008 | DOI
[3] C. Sulem, P.-L. Sulem, The Nonlinear Shrodinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, 139, Springer, New York, 1999 | DOI | MR
[4] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov do fotonnykh kristallov, Fizmatlit, M., 2005
[5] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep., 528:2 (2013), 47–89 | DOI | MR
[6] C. Kharif, E. Pelinivosky, A. Slunyaev, Rogue Waves in the Ocean, Advances in Geophysical and Environmetal Mechanics and Mathematics, Springer, Heidelberg, 2009 | DOI | MR
[7] A. I. Maimistov, A. M. Basharov, Nonlinear Optical Waves, Fundamental Theories of Physics, 104, Kluwer, Dordrecht, 1999 | DOI | MR
[8] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516
[9] V. I. Nayanov, Mnogopolevye solitony, Fizmatlit, M., 2006 | MR
[10] L.-C. Zhao, J. Liu, “Localized nonlinear waves in a two-mode nonlinear fiber”, J. Opt. Soc. Amer. B, 29:11 (2012), 3119–3127 | DOI
[11] N. Vishnu Priya, M. Senthilvelan, M. Lakshmanan, “Akhmediev breathers, Ma solitons, and general breathers from rogue waves: A case study in the Manakov system”, Phys. Rev. E, 88:2 (2013), 022918, 11 pp., arXiv: 1308.5565 | DOI
[12] S. Chen, D. Mihalache, “Vector rogue waves in the Manakov system: diversity and compossibility”, J. Phys. A: Math. Theor., 48:21 (2015), 215202, 20 pp. | DOI | MR
[13] W.-J. Chen, S.-C. Chen, C. Liu, L.-C. Zhao, N. Akhmediev, “Non-degenerate Kuznetsov–Ma solitons of Manakov equations and their physical spectra”, Phys. Rev. A, 105:4 (2022), 043526, 14 pp., arXiv: 2203.03999 | DOI | MR
[14] D. Kraus, G. Biondini, G. Kovačič, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR
[15] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Shrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR
[16] G. Biondini, D. Kraus, “Inverse scattering transorm for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR
[17] A. A. Gelash, V. E. Zakharov, “Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability”, Nonlinearity, 27:4 (2014), R1–R39 | DOI | MR
[18] A. Yu. Orlov, Kollaps solitonov v integriruemykh modelyakh, Preprint No 221, IAiE SO RAN, Novosibirsk, 1983
[19] G. E. Fal'kovich, M. D. Spector, S. K. Turitsyn, “Destruction of stationary solutions and collapse in the nonlnear string equation”, Phys. Lett. A, 99:6–7 (1983), 271–274 | DOI | MR
[20] V. E. Zakharov, S. V. Manakov, “K teorii rezonasnogo vzaimodeistviya volnovykh paketov v nelineinykh sredakh”, ZhETF, 69:5 (1975), 1654–1673 | MR
[21] I. V. Barashenkov, B. G. Getmanov, V. E. Kovtun, “Integrable model with non-trivial interaction between sub- and superluminal solitons”, Phys. Lett. A, 128:3-4 (1988), 182–186 | DOI | MR
[22] I. V. Barashenkov, B. G. Getmanov, “The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. II”, J. Math. Phys., 34:7 (1993), 3054–3072 | DOI | MR
[23] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[24] A. A. Raskovalov, A. A. Gelash, “Rezonansnoe vzaimodeistvie vektornykh brizerov”, Pisma v ZhETF, 115:1 (2022), 51–58 | DOI | DOI
[25] E. A. Kuznetsov, “O solitonakh v parametricheski neustoichivoi plazme”, Dokl. AN SSSR, 236:3 (1977), 575–577
[26] D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon”, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR
[27] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR
[28] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Metod obratnoi zadachi rasseyaniya v primenenii k singulyarnym resheniyam integralnykh uravnenii. I”, TMF, 53:2 (1982), 163–180 ; “Метод обратной задачи рассеяния в применении к сингулярным решениям интегральных уравнений. II”, 54:1 (1983), 23–37 ; В. А. Аркадьев, “Метод обратной задачи рассеяния в применении к сингулярным решениям интегральных уравнений. III”, 58:1 (1984), 38–49 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl