Resonanse interaction of breathers in the Manakov system
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 418-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By means of the dressing technique we build the multipole solutions of the focusing Manakov system under the constant background. These solutions become degenerated, when the poles of the dressing function are merging. We find out, that at the special choice of integration costants such solutions describe the fusion or decay of the pulsing solitons - breathers - and for their wave numbers and frequencies the typical resonanse condition is valid. We investigate the different cases of such resonanse interactions.
Keywords: Manakov system, resonanse interaction, Kuznetsov soliton.
Mots-clés : solitons, "dressing" technique
@article{TMF_2022_213_3_a1,
     author = {A. A. Raskovalov and A. A. Gelash},
     title = {Resonanse interaction of breathers in {the~Manakov} system},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {418--436},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/}
}
TY  - JOUR
AU  - A. A. Raskovalov
AU  - A. A. Gelash
TI  - Resonanse interaction of breathers in the Manakov system
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 418
EP  - 436
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/
LA  - ru
ID  - TMF_2022_213_3_a1
ER  - 
%0 Journal Article
%A A. A. Raskovalov
%A A. A. Gelash
%T Resonanse interaction of breathers in the Manakov system
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 418-436
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/
%G ru
%F TMF_2022_213_3_a1
A. A. Raskovalov; A. A. Gelash. Resonanse interaction of breathers in the Manakov system. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 418-436. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a1/

[1] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, PMTF, 1968, no. 2, 86–94 | DOI

[2] N. N. Akhmediev, A. Ankevich, Dissipativnye solitony, Fizmatlit, 2008 | DOI

[3] C. Sulem, P.-L. Sulem, The Nonlinear Shrodinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, 139, Springer, New York, 1999 | DOI | MR

[4] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov do fotonnykh kristallov, Fizmatlit, M., 2005

[5] M. Onorato, S. Residori, U. Bortolozzo, A. Montina, F. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts”, Phys. Rep., 528:2 (2013), 47–89 | DOI | MR

[6] C. Kharif, E. Pelinivosky, A. Slunyaev, Rogue Waves in the Ocean, Advances in Geophysical and Environmetal Mechanics and Mathematics, Springer, Heidelberg, 2009 | DOI | MR

[7] A. I. Maimistov, A. M. Basharov, Nonlinear Optical Waves, Fundamental Theories of Physics, 104, Kluwer, Dordrecht, 1999 | DOI | MR

[8] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516

[9] V. I. Nayanov, Mnogopolevye solitony, Fizmatlit, M., 2006 | MR

[10] L.-C. Zhao, J. Liu, “Localized nonlinear waves in a two-mode nonlinear fiber”, J. Opt. Soc. Amer. B, 29:11 (2012), 3119–3127 | DOI

[11] N. Vishnu Priya, M. Senthilvelan, M. Lakshmanan, “Akhmediev breathers, Ma solitons, and general breathers from rogue waves: A case study in the Manakov system”, Phys. Rev. E, 88:2 (2013), 022918, 11 pp., arXiv: 1308.5565 | DOI

[12] S. Chen, D. Mihalache, “Vector rogue waves in the Manakov system: diversity and compossibility”, J. Phys. A: Math. Theor., 48:21 (2015), 215202, 20 pp. | DOI | MR

[13] W.-J. Chen, S.-C. Chen, C. Liu, L.-C. Zhao, N. Akhmediev, “Non-degenerate Kuznetsov–Ma solitons of Manakov equations and their physical spectra”, Phys. Rev. A, 105:4 (2022), 043526, 14 pp., arXiv: 2203.03999 | DOI | MR

[14] D. Kraus, G. Biondini, G. Kovačič, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR

[15] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Shrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR

[16] G. Biondini, D. Kraus, “Inverse scattering transorm for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR

[17] A. A. Gelash, V. E. Zakharov, “Superregular solitonic solutions: a novel scenario for the nonlinear stage of modulation instability”, Nonlinearity, 27:4 (2014), R1–R39 | DOI | MR

[18] A. Yu. Orlov, Kollaps solitonov v integriruemykh modelyakh, Preprint No 221, IAiE SO RAN, Novosibirsk, 1983

[19] G. E. Fal'kovich, M. D. Spector, S. K. Turitsyn, “Destruction of stationary solutions and collapse in the nonlnear string equation”, Phys. Lett. A, 99:6–7 (1983), 271–274 | DOI | MR

[20] V. E. Zakharov, S. V. Manakov, “K teorii rezonasnogo vzaimodeistviya volnovykh paketov v nelineinykh sredakh”, ZhETF, 69:5 (1975), 1654–1673 | MR

[21] I. V. Barashenkov, B. G. Getmanov, V. E. Kovtun, “Integrable model with non-trivial interaction between sub- and superluminal solitons”, Phys. Lett. A, 128:3-4 (1988), 182–186 | DOI | MR

[22] I. V. Barashenkov, B. G. Getmanov, “The unified approach to integrable relativistic equations: Soliton solutions over nonvanishing backgrounds. II”, J. Math. Phys., 34:7 (1993), 3054–3072 | DOI | MR

[23] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[24] A. A. Raskovalov, A. A. Gelash, “Rezonansnoe vzaimodeistvie vektornykh brizerov”, Pisma v ZhETF, 115:1 (2022), 51–58 | DOI | DOI

[25] E. A. Kuznetsov, “O solitonakh v parametricheski neustoichivoi plazme”, Dokl. AN SSSR, 236:3 (1977), 575–577

[26] D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon”, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR

[27] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[28] V. A. Arkadev, A. K. Pogrebkov, M. K. Polivanov, “Metod obratnoi zadachi rasseyaniya v primenenii k singulyarnym resheniyam integralnykh uravnenii. I”, TMF, 53:2 (1982), 163–180 ; “Метод обратной задачи рассеяния в применении к сингулярным решениям интегральных уравнений. II”, 54:1 (1983), 23–37 ; В. А. Аркадьев, “Метод обратной задачи рассеяния в применении к сингулярным решениям интегральных уравнений. III”, 58:1 (1984), 38–49 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl