Euler's difference table and the decomposition of tensor powers of the adjoint representation of the $A_n$ Lie algebra
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 413-417 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By using Euler's difference table, we obtain a simple explicit formula for the decomposition of the $k$th tensor power of the adjoint representation of the $A_n$ Lie algebra at $2k\le n+1$.
Mots-clés : Lie algebras
Keywords: representation theory.
@article{TMF_2022_213_3_a0,
     author = {A. M. Perelomov},
     title = {Euler's difference table and the~decomposition of tensor powers of the~adjoint representation of the~$A_n$ {Lie} algebra},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--417},
     year = {2022},
     volume = {213},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a0/}
}
TY  - JOUR
AU  - A. M. Perelomov
TI  - Euler's difference table and the decomposition of tensor powers of the adjoint representation of the $A_n$ Lie algebra
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 413
EP  - 417
VL  - 213
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a0/
LA  - ru
ID  - TMF_2022_213_3_a0
ER  - 
%0 Journal Article
%A A. M. Perelomov
%T Euler's difference table and the decomposition of tensor powers of the adjoint representation of the $A_n$ Lie algebra
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 413-417
%V 213
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a0/
%G ru
%F TMF_2022_213_3_a0
A. M. Perelomov. Euler's difference table and the decomposition of tensor powers of the adjoint representation of the $A_n$ Lie algebra. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 3, pp. 413-417. http://geodesic.mathdoc.fr/item/TMF_2022_213_3_a0/

[1] E. B. Vinberg, A. L. Onischik, “Osnovy teorii grupp Li”, Gruppy Li i algebry Li – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 20, VINITI, M., 1988, 5–101 | MR | Zbl

[2] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, “On an approach for computing the generating functions of the characters of simple Lie algebras”, J. Phys. A: Math. Theor., 47:14 (2014), 145202, 14 pp., arXiv: 1304.7203 | DOI | MR

[3] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, “On the generating function of weight multiplicities for the representations of the Lie algebra $C_2$”, J. Math. Phys., 56:4 (2015), 041702, 11 pp., arXiv: 1405.2758 | DOI | MR

[4] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, “Generating functions and multiplicity formulas: The case of rank two simple Lie algebras”, J. Math. Phys., 56:9 (2015), 091702, 10 pp., arXiv: 1506.07815 | DOI | MR

[5] J. Fernández Núñez, W. García Fuertes, A. M. Perelomov, “Generating functions for characters and weight multiplicities of irreducible $\mathfrak{sl}(4)$-modules”, J. Nonlinear Math. Phys., 25:4 (2018), 618–632, arXiv: 1705.03711 | DOI | MR

[6] P. Hanlon, “On the decomposition of the tensor algebra of the classical Lie algebras”, Adv. Math., 56:3 (1985), 238–282 | DOI | MR

[7] G. Benkart, S. Doty, “Derangements and tensor powers of adjoint modules for $\mathfrak{sl}_n$”, J. Algebraic Combin., 16:1 (2002), 31–42, arXiv: math/0108106 | DOI | MR

[8] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 | MR

[9] L. Euler, “Calcul de la probabilité dans le jeu de rencontres”, Mem. Acad. Sci. de Berlin, 7 (1753), 255–270

[10] L. Euler, “Solutio quaestionis curiosae ex doctrina combinationum”, Mem. Acad. Sci. de Berlin, 3 (1779), 57–64

[11] Dzh. Riordan, Vvedenie v kombinatornyi analiz, IL, M., 1963 | MR

[12] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, AMS Chelsea Publishing, 357, AMS, Providence, RI, 1950 | DOI | MR