Quantum oscillations in the black hole horizon
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 370-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A quantum model for the Schwarzschild black hole was recently proposed by applying Rosen's quantization approach to the historical Oppenheimer and Snyder gravitational collapse and by setting the constraints on the formation of the Schwarzschild black hole. An interesting picture emerges: the traditional Schwarzschild singularity is replaced by a quantum oscillator describing a nonsingular “two-particle” system where the two components, the “nucleus” and the “electron”, strongly interact with each other through a quantum gravitational interaction. In agreement with the de Broglie hypothesis, the “electron” is interpreted in terms of quantum oscillations of the black-hole horizon. In other words, the Schwarzschild black hole should be considered as a gravitational analogue of the hydrogen atom. In this paper, after a short review of our previous results, we analyze some of the consequences of this approach. We also show that, by performing a correct rescaling of the energy levels, the semiclassical Bohr-like approach to quantum black holes, previously developed by one of the authors (CC), is consistent with the results obtained here for large values of the black-hole principal quantum number. After this, Hawking radiation is analyzed by discussing its connection with the black-hole quantum structure. Finally, we conclude the paper by discussing the black-hole information problem and its possible resolution.
Keywords: quantum black holes, quantum levels, hydrogen atom
Mots-clés : information paradox.
@article{TMF_2022_213_2_a7,
     author = {C. Corda and F. Feleppa and F. Tamburini and I. Licata},
     title = {Quantum oscillations in the~black hole horizon},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {370--410},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/}
}
TY  - JOUR
AU  - C. Corda
AU  - F. Feleppa
AU  - F. Tamburini
AU  - I. Licata
TI  - Quantum oscillations in the black hole horizon
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 370
EP  - 410
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/
LA  - ru
ID  - TMF_2022_213_2_a7
ER  - 
%0 Journal Article
%A C. Corda
%A F. Feleppa
%A F. Tamburini
%A I. Licata
%T Quantum oscillations in the black hole horizon
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 370-410
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/
%G ru
%F TMF_2022_213_2_a7
C. Corda; F. Feleppa; F. Tamburini; I. Licata. Quantum oscillations in the black hole horizon. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 370-410. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/

[1] C. Corda, F. Feleppa, “The quantum black hole as a gravitational hydrogen atom”, Adv. Theor. Math. Phys., 2022 (to appear) , arXiv: 1912.06478 | DOI

[2] N. Rosen, “Quantum mechanics of a miniuniverse”, Internat. J. Theoret. Phys., 32:8 (1993), 1435–1440 | DOI | MR

[3] A. Feoli, “Some predictions of the cosmological Schrödinger equation”, Internat. J. Modern Phys. D, 12:8 (2003), 1475–1485 | DOI | MR

[4] I. Licata, G. Iovane, L. Chiatti, E. Benedetto, F. Tamburini, “Dark Universe and distribution of matter as quantum imprinting”, Phys. Dark Universe, 22 (2018), 181–188, arXiv: 1905.02389 | DOI

[5] A. Feoli, E. Benedetto, M. Capriolo, F. Feleppa, “Is Dark Energy due to an excited quantum state of the Universe?”, Eur. Phys. J. Plus, 132:5 (2017), 211, 7 pp. | DOI

[6] E. P. T. Liang, “Quantum models for the lowest-order velocity-dominated solutions of irrotational dust cosmologies”, Phys. Rev. D, 5:10 (1972), 2458–2466 | DOI | MR

[7] Dzh. Oppengeimer, G. Snaider, “O bezgranichnom gravitatsionnom szhatii”, Albert Einshtein i teoriya gravitatsii, eds. E. S. Kuranskii, Mir, M., 1979, 353–361 | MR | MR | Zbl

[8] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977 | MR

[9] R. Penrose, “Gravitational collapse and space-time singularities”, Phys. Rev. Lett., 14:3 (1965), 57–59 | DOI | MR

[10] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1973 | DOI | MR

[11] R. M. Uold, Obschaya teoriya otnositelnosti, RUDN, M., 2008 | MR | Zbl

[12] L. Modesto, “Disappearance of the black hole singularity in loop quantum gravity”, Phys. Rev. D, 70:12 (2004), 124009, 5 pp., arXiv: gr-qc/0407097 | DOI | MR

[13] J. D. Bekenstein, “The quantum mass spectrum of the Kerr black hole”, Lett. Nuovo Cimento, 11:2 (1974), 467–477 | DOI

[14] M. Maggiore, “Black holes as quantum membranes”, Nucl. Phys. B, 429:1 (1994), 205–228, arXiv: gr-qc/9401027 | DOI | MR

[15] V. F. Mukhanov, “Kvantovany li chernye dyry?”, Pisma v ZhETF, 44:1 (1986), 50–53 | MR

[16] J. D. Bekenstein, V. F. Mukhanov, “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360:1–2 (1995), 7–12, arXiv: gr-qc/9505012 | DOI | MR

[17] S. Das, P. Ramadevi, U. A. Yajnik, “Black hole area quantization”, Modern Phys. Lett. A, 17:15–17 (2002), 993–1000, arXiv: hep-th/0202076 | DOI | MR

[18] A. Barvinsky, S. Das, G. Kunstatter, “Quantum mechanics of charged black holes”, Phys. Lett. B, 517:3–4 (200), 415–420, arXiv: hep-th/0102061 | MR

[19] M. Born, Atomnaya fizika, Mir, M., 1967

[20] L. de Broglie, “Recherches sur la théorie des quanta”, Ann. Phys. (Paris), 3:10 (1925), 22–128 | Zbl

[21] W. Piechocki, T. Schmitz, “Quantum Oppenheimer–Snyder model”, Phys. Rev. D, 102:4 (2020), 046004, 23 pp., arXiv: 2004.02939 | DOI | MR

[22] C. Corda, “Precise model of Hawking radiation from the tunnelling mechanism”, Class. Quantum Grav., 32:19 (2015), 195007, 11 pp. | DOI | MR

[23] C. Corda, “Time dependent Schrödinger equation for black hole evaporation: No information loss”, Ann. Phys., 353 (2015), 71–82 | DOI | MR

[24] C. Corda, “Quasi-normal modes: the “electrons” of black holes as “gravitational atoms”? Implications for the black hole information puzzle”, Adv. High Energy Phys., 2015 (2015), 867601, 16 pp. | DOI | MR

[25] J. D. Bekenstein, “Quantum black holes as atoms”, The Eighth Marcel Grossmann Meeting (Jerusalem, Israel, June 22 – 27, 1997), eds. T. Piran, R. Ruffini, World Sci., Singapore, 1999, 92–111, arXiv: gr-qc/9710076 | MR

[26] P. Hájíček, C. Kiefer, “Embedding variables in the canonical theory of gravitating shells”, Nucl. Phys. B, 603:3 (2001), 531–554, arXiv: hep-th/0007004 | DOI | MR

[27] P. Hájiček, C. Kiefer, “Singularity avoidance by collapsing shells in quantum gravity”, Internat. J. Modern Phys. D, 10:6 (2001), 775–779, arXiv: gr-qc/0107102 | DOI | MR

[28] T. Schmitz, “Towards a quantum Oppenheimer–Snyder model”, Phys. Rev. D, 101:2 (2020), 026016, 11 pp., arXiv: 1912.08175 | DOI | MR

[29] F. Alford, “The scattering map on Oppenheimer–Snyder space-time”, Ann. Henri Poincaré, 21:6 (2020), 2031–2092, arXiv: 1910.02752 | DOI | MR

[30] I. Bengtsson, E. Jakobsson, J. M. M. Senovilla, “Trapped surfaces in Oppenheimer–Snyder black holes”, Phys. Rev. D, 88:6 (2013), 064012, 16 pp., arXiv: 1306.6486 | DOI

[31] L. Brewin, J. Kajtar, “Smooth lattice construction of the Oppenheimer–Snyder spacetime”, Phys. Rev. D, 80:10 (2009), 104004, 18 pp., arXiv: 0903.5367 | DOI

[32] A. Messiah, Quantum Mechanics, v. I, John Wiley and Sons, New York, 1958 | MR

[33] S. W. Hawking, “The path-integral approach to quantum gravity”, General Relativity: An Einstein Centenary Survey, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 746–789 | MR

[34] I. Agullo, V. Cardoso, A. del Rio, M. Maggiore, J. Pullin, “Potential gravitational wave signatures of quantum gravity”, Phys. Rev. Lett., 126:4 (2021), 041302, 7 pp., arXiv: 2007.13761 | DOI | MR

[35] N. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley and Sons, New York, 2009 | MR

[36] A. Kempf, G. Mangano, R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52:2 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR

[37] R. J. Adler, P. Chen, D. I. Santiago, “The generalized uncertainty principle and black hole remnants”, Gen. Rel. Grav., 33:12 (2001), 2101–2108 | DOI | MR

[38] W. H. Press, “Long wave trains of gravitational waves from a vibrating black hole”, Astrophys. J., 170:3 (1971), L105–L108 | DOI

[39] S. Hod, “Bohr's correspondence principle and the area spectrum of quantum black holes”, Phys. Rev. Lett., 81:20 (1998), 4293–4296 | DOI | MR

[40] M. Maggiore, “Physical interpretation of the spectrum of black hole quasinormal modes”, Phys. Rev. Lett., 100:14 (2008), 141301, 4 pp., arXiv: 0711.3145 | DOI | MR

[41] N. Bohr, “On the constitution of atoms and molecules. I”, Phil. Mag. (6), 26:151 (1913), 1–25 | DOI

[42] E. Spallucci, A. Smailagic, “Horizons and the wave function of Planckian quantum black holes”, Phys. Lett B, 816 (2021), 136180, 4 pp. | DOI | MR

[43] B. G. Schmidt, “A new definition of singular points in general relativity”, Gen. Rel. Grav., 1:3 (1971), 269–280 | DOI | MR

[44] A. N. Tawfikand, A. M. Diab, “A review of the generalized uncertainty principle”, Rep. Prog. Phys., 78:12 (2015), 126001, arXiv: 1509.02436 | DOI

[45] F. Tamburini, I. Licata, “General relativistic wormhole connections from Planck-scales and the ER${}= {}$EPR conjecture”, Entropy, 22:1 (2020), 3, 14 pp. | DOI | MR

[46] C. Corda, F. Feleppa, F. Tamburini, “On the quantization of the extremal Reissner–Nordström black hole”, Europhys. Lett., 132:3 (2020), 30001, 7 pp. | DOI

[47] J. Lindesay, Foundations of Quantum Gravity, Cambridge Univ. Press, Cambridge, 2013 | DOI

[48] B. Muthukumar, P. Mitra, “Noncommutative oscillators and the commutative limit”, Phys. Rev. D, 66:2 (2002), 027701, 3 pp., arXiv: hep-th/0204149 | DOI | MR

[49] S. Haldar, C. Corda, S. Chakraborty, “Tunnelling mechanism in noncommutative space with generalized uncertainty principle and Bohr-like black hole”, Adv. High Energy Phys., 2018 (2018), 9851598, 9 pp. | DOI | MR

[50] B.-S. Lin, T.-H. Heng, “Energy spectra of the harmonic oscillator in a generalized noncommutative phase space of arbitrary dimension”, Chinese Phys. Lett., 28:7 (2011), 070303, 4 pp. | DOI

[51] I. Dadic, L. Jonke, S. Meljanac, “Harmonic oscillator on noncommutative spaces”, Acta Phys. Slov., 55:2 (2005), 149–164, arXiv: \href{http://arxiv.org/abs/hep-th/0301066}

[52] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR

[53] R. P. Feynman, The principle of least action in quantum mechanics, Ph.D. thesis, Princeton Univ., Princeton, 1942; reprinted in: Feynman's Thesis – A New Approach to Quantum Theory, ed. L. M. Brown, World Sci., Singapore, 2005, 1–69 | DOI | MR

[54] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7:8 (1973), 2333–2346 | DOI | MR

[55] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys., 43:3 (1975), 199–220 | DOI | MR

[56] H.-P. Yan, W.-B. Liu, “The third order correction on Hawking radiation and entropy conservation during black hole evaporation process”, Phys. Lett. B, 759 (2016), 293–297 | DOI

[57] G. Scharf, “Microcanonical quantum statistics of Schwarzschild black holes”, Nuovo Cimento B, 113:6 (1998), 821–824, arXiv: gr-qc/9711020 | MR

[58] S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D, 13:2 (1976), 191–197 | DOI

[59] B. Harms, Y. Leblanc, “Statistical mechanics of black holes”, Phys. Rev. D, 46:6 (1992), 2334–2340, arXiv: hep-th/9205021 | DOI | MR

[60] C. Corda, “Effective temperature, Hawking radiation and quasinormal modes”, Internat. J. Modern Phys. D, 21:11 (2012), 1242023, 11 pp., arXiv: 1205.5251 | DOI | MR

[61] C. Corda, “Effective temperature for black holes”, JHEP, 08 (2011), 101, arXiv: 1107.5334 | DOI

[62] M. Parikh, F. Wilczek, “Hawking radiation as tunneling”, Phys. Rev. Lett., 85:24 (2000), 5042–5045, arXiv: hep-th/9907001 | DOI | MR

[63] R. Banerjee, B. R. Majhi, “Quantum tunneling beyond semiclassical approximation”, JHEP, 06 (2008), 095, 20 pp. | DOI | MR

[64] M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, “Hawking radiation as tunneling for extremal and rotating black holes”, JHEP, 05 (2005), 014, 19 pp., arXiv: hep-th/0503081 | DOI | MR

[65] M. Arzano, A. J. M. Medved, E. C. Vagenas, “Hawking radiation as tunneling through the quantum horizon”, JHEP, 09 (2005), 037, 14 pp. | DOI | MR

[66] R. Banerjee, B. R. Majhi, “Hawking black body spectrum from tunneling mechanism”, Phys. Lett. B, 675:2 (2009), 243–245 | DOI | MR

[67] C. Corda, “Non-strictly black body spectrum from the tunnelling mechanism”, Ann. Phys., 337 (2013), 49–54, arXiv: 1305.4529 | DOI | MR

[68] S. Z. Yang, H. L. Li, Q. Q. Jiang, M. Q. Liu, “The research on the quantum tunneling characteristics and the radiation spectrum of the stationary axisymmetric black hole”, Sci. China Ser. G, 50:2 (2007), 249–260 | DOI

[69] J. W. York, Jr., “Dynamical origin of black-hole radiance”, Phys. Rev. D, 28:12 (1983), 2929–2945 | DOI | MR

[70] N. Bohr, “Über die Serienspektra der Elemente”, Z. Phys., 2:5 (1920), 423–469 | DOI

[71] L. Motl, “An analytical computation of asymptotic Schwarzschild quasinormal frequencies”, Adv. Theor. Math. Phys., 6:6 (2003), 1135–1162 | DOI | MR

[72] G. Dvali, C. Gomez, “Black hole's quantum $N$-portrait”, Fortsch. Phys., 61:7–8 (2013), 742–767 | DOI | MR

[73] K. V. Krasnov, “Quantum geometry and thermal radiation from black holes”, Class. Quantum Grav., 16:2 (1999), 563–578, arXiv: gr-qc/9710006 | DOI | MR

[74] Y. Yoon, “Quantum corrections to the Hawking radiation spectrum”, J. Korean Phys. Soc., 68:6 (2016), 730–734 | DOI

[75] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D, 14:10 (1976), 2460–2475 | DOI | MR

[76] S. W. Hawking, “Information loss in black holes”, Phys. Rev. D, 72:8 (2005), 084013, 4 pp., arXiv: hep-th/0507171 | DOI | MR

[77] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 2006

[78] G. 't Hooft, “The scattering matrix approach for the quantum black hole: an overview”, Internat. J. Modern Phys. A, 11:26 (1996), 4623–4688, arXiv: gr-qc/9607022 | DOI | MR

[79] S. D. Mathur, “The information paradox: Conflicts and resolutions”, Pramana, 79:5 (2012), 1059–1073, arXiv: 1201.2079 | DOI

[80] A. Saini, D. Stojkovic, “Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse”, Phys. Rev. D, 89:4 (2014), 044003, 8 pp., arXiv: 1401.6182 | DOI

[81] E. Greenwood, D. Stojkovic, “Quantum gravitational collapse: non-singularity and non-locality”, JHEP, 06 (2008), 042, 14 pp., arXiv: 0802.4087 | DOI | MR

[82] J. E. Wang, E. Greenwood, D. Stojkovic, “Schrödinger formalism, black hole horizons, and singularity behavior”, Phys. Rev. D, 80:12 (2009), 124027, 10 pp., arXiv: 0906.3250 | DOI | MR

[83] A. Davidson, “From Planck area to graph theory: Topologically distinct black hole microstates”, Phys. Rev. D, 100:8 (2019), 081502, 7 pp., arXiv: 1907.03090 | DOI | MR

[84] A. Davidson, “Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state”, Phys. Lett. B, 780 (2018), 29–33, arXiv: 1708.00987 | DOI