Mots-clés : information paradox.
@article{TMF_2022_213_2_a7,
author = {C. Corda and F. Feleppa and F. Tamburini and I. Licata},
title = {Quantum oscillations in the~black hole horizon},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {370--410},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/}
}
TY - JOUR AU - C. Corda AU - F. Feleppa AU - F. Tamburini AU - I. Licata TI - Quantum oscillations in the black hole horizon JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 370 EP - 410 VL - 213 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/ LA - ru ID - TMF_2022_213_2_a7 ER -
C. Corda; F. Feleppa; F. Tamburini; I. Licata. Quantum oscillations in the black hole horizon. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 370-410. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a7/
[1] C. Corda, F. Feleppa, “The quantum black hole as a gravitational hydrogen atom”, Adv. Theor. Math. Phys., 2022 (to appear) , arXiv: 1912.06478 | DOI
[2] N. Rosen, “Quantum mechanics of a miniuniverse”, Internat. J. Theoret. Phys., 32:8 (1993), 1435–1440 | DOI | MR
[3] A. Feoli, “Some predictions of the cosmological Schrödinger equation”, Internat. J. Modern Phys. D, 12:8 (2003), 1475–1485 | DOI | MR
[4] I. Licata, G. Iovane, L. Chiatti, E. Benedetto, F. Tamburini, “Dark Universe and distribution of matter as quantum imprinting”, Phys. Dark Universe, 22 (2018), 181–188, arXiv: 1905.02389 | DOI
[5] A. Feoli, E. Benedetto, M. Capriolo, F. Feleppa, “Is Dark Energy due to an excited quantum state of the Universe?”, Eur. Phys. J. Plus, 132:5 (2017), 211, 7 pp. | DOI
[6] E. P. T. Liang, “Quantum models for the lowest-order velocity-dominated solutions of irrotational dust cosmologies”, Phys. Rev. D, 5:10 (1972), 2458–2466 | DOI | MR
[7] Dzh. Oppengeimer, G. Snaider, “O bezgranichnom gravitatsionnom szhatii”, Albert Einshtein i teoriya gravitatsii, eds. E. S. Kuranskii, Mir, M., 1979, 353–361 | MR | MR | Zbl
[8] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977 | MR
[9] R. Penrose, “Gravitational collapse and space-time singularities”, Phys. Rev. Lett., 14:3 (1965), 57–59 | DOI | MR
[10] S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1973 | DOI | MR
[11] R. M. Uold, Obschaya teoriya otnositelnosti, RUDN, M., 2008 | MR | Zbl
[12] L. Modesto, “Disappearance of the black hole singularity in loop quantum gravity”, Phys. Rev. D, 70:12 (2004), 124009, 5 pp., arXiv: gr-qc/0407097 | DOI | MR
[13] J. D. Bekenstein, “The quantum mass spectrum of the Kerr black hole”, Lett. Nuovo Cimento, 11:2 (1974), 467–477 | DOI
[14] M. Maggiore, “Black holes as quantum membranes”, Nucl. Phys. B, 429:1 (1994), 205–228, arXiv: gr-qc/9401027 | DOI | MR
[15] V. F. Mukhanov, “Kvantovany li chernye dyry?”, Pisma v ZhETF, 44:1 (1986), 50–53 | MR
[16] J. D. Bekenstein, V. F. Mukhanov, “Spectroscopy of the quantum black hole”, Phys. Lett. B, 360:1–2 (1995), 7–12, arXiv: gr-qc/9505012 | DOI | MR
[17] S. Das, P. Ramadevi, U. A. Yajnik, “Black hole area quantization”, Modern Phys. Lett. A, 17:15–17 (2002), 993–1000, arXiv: hep-th/0202076 | DOI | MR
[18] A. Barvinsky, S. Das, G. Kunstatter, “Quantum mechanics of charged black holes”, Phys. Lett. B, 517:3–4 (200), 415–420, arXiv: hep-th/0102061 | MR
[19] M. Born, Atomnaya fizika, Mir, M., 1967
[20] L. de Broglie, “Recherches sur la théorie des quanta”, Ann. Phys. (Paris), 3:10 (1925), 22–128 | Zbl
[21] W. Piechocki, T. Schmitz, “Quantum Oppenheimer–Snyder model”, Phys. Rev. D, 102:4 (2020), 046004, 23 pp., arXiv: 2004.02939 | DOI | MR
[22] C. Corda, “Precise model of Hawking radiation from the tunnelling mechanism”, Class. Quantum Grav., 32:19 (2015), 195007, 11 pp. | DOI | MR
[23] C. Corda, “Time dependent Schrödinger equation for black hole evaporation: No information loss”, Ann. Phys., 353 (2015), 71–82 | DOI | MR
[24] C. Corda, “Quasi-normal modes: the “electrons” of black holes as “gravitational atoms”? Implications for the black hole information puzzle”, Adv. High Energy Phys., 2015 (2015), 867601, 16 pp. | DOI | MR
[25] J. D. Bekenstein, “Quantum black holes as atoms”, The Eighth Marcel Grossmann Meeting (Jerusalem, Israel, June 22 – 27, 1997), eds. T. Piran, R. Ruffini, World Sci., Singapore, 1999, 92–111, arXiv: gr-qc/9710076 | MR
[26] P. Hájíček, C. Kiefer, “Embedding variables in the canonical theory of gravitating shells”, Nucl. Phys. B, 603:3 (2001), 531–554, arXiv: hep-th/0007004 | DOI | MR
[27] P. Hájiček, C. Kiefer, “Singularity avoidance by collapsing shells in quantum gravity”, Internat. J. Modern Phys. D, 10:6 (2001), 775–779, arXiv: gr-qc/0107102 | DOI | MR
[28] T. Schmitz, “Towards a quantum Oppenheimer–Snyder model”, Phys. Rev. D, 101:2 (2020), 026016, 11 pp., arXiv: 1912.08175 | DOI | MR
[29] F. Alford, “The scattering map on Oppenheimer–Snyder space-time”, Ann. Henri Poincaré, 21:6 (2020), 2031–2092, arXiv: 1910.02752 | DOI | MR
[30] I. Bengtsson, E. Jakobsson, J. M. M. Senovilla, “Trapped surfaces in Oppenheimer–Snyder black holes”, Phys. Rev. D, 88:6 (2013), 064012, 16 pp., arXiv: 1306.6486 | DOI
[31] L. Brewin, J. Kajtar, “Smooth lattice construction of the Oppenheimer–Snyder spacetime”, Phys. Rev. D, 80:10 (2009), 104004, 18 pp., arXiv: 0903.5367 | DOI
[32] A. Messiah, Quantum Mechanics, v. I, John Wiley and Sons, New York, 1958 | MR
[33] S. W. Hawking, “The path-integral approach to quantum gravity”, General Relativity: An Einstein Centenary Survey, eds. S. W. Hawking, W. Israel, Cambridge Univ. Press, Cambridge, 1979, 746–789 | MR
[34] I. Agullo, V. Cardoso, A. del Rio, M. Maggiore, J. Pullin, “Potential gravitational wave signatures of quantum gravity”, Phys. Rev. Lett., 126:4 (2021), 041302, 7 pp., arXiv: 2007.13761 | DOI | MR
[35] N. Zettili, Quantum Mechanics: Concepts and Applications, John Wiley and Sons, New York, 2009 | MR
[36] A. Kempf, G. Mangano, R. B. Mann, “Hilbert space representation of the minimal length uncertainty relation”, Phys. Rev. D, 52:2 (1995), 1108–1118, arXiv: hep-th/9412167 | DOI | MR
[37] R. J. Adler, P. Chen, D. I. Santiago, “The generalized uncertainty principle and black hole remnants”, Gen. Rel. Grav., 33:12 (2001), 2101–2108 | DOI | MR
[38] W. H. Press, “Long wave trains of gravitational waves from a vibrating black hole”, Astrophys. J., 170:3 (1971), L105–L108 | DOI
[39] S. Hod, “Bohr's correspondence principle and the area spectrum of quantum black holes”, Phys. Rev. Lett., 81:20 (1998), 4293–4296 | DOI | MR
[40] M. Maggiore, “Physical interpretation of the spectrum of black hole quasinormal modes”, Phys. Rev. Lett., 100:14 (2008), 141301, 4 pp., arXiv: 0711.3145 | DOI | MR
[41] N. Bohr, “On the constitution of atoms and molecules. I”, Phil. Mag. (6), 26:151 (1913), 1–25 | DOI
[42] E. Spallucci, A. Smailagic, “Horizons and the wave function of Planckian quantum black holes”, Phys. Lett B, 816 (2021), 136180, 4 pp. | DOI | MR
[43] B. G. Schmidt, “A new definition of singular points in general relativity”, Gen. Rel. Grav., 1:3 (1971), 269–280 | DOI | MR
[44] A. N. Tawfikand, A. M. Diab, “A review of the generalized uncertainty principle”, Rep. Prog. Phys., 78:12 (2015), 126001, arXiv: 1509.02436 | DOI
[45] F. Tamburini, I. Licata, “General relativistic wormhole connections from Planck-scales and the ER${}= {}$EPR conjecture”, Entropy, 22:1 (2020), 3, 14 pp. | DOI | MR
[46] C. Corda, F. Feleppa, F. Tamburini, “On the quantization of the extremal Reissner–Nordström black hole”, Europhys. Lett., 132:3 (2020), 30001, 7 pp. | DOI
[47] J. Lindesay, Foundations of Quantum Gravity, Cambridge Univ. Press, Cambridge, 2013 | DOI
[48] B. Muthukumar, P. Mitra, “Noncommutative oscillators and the commutative limit”, Phys. Rev. D, 66:2 (2002), 027701, 3 pp., arXiv: hep-th/0204149 | DOI | MR
[49] S. Haldar, C. Corda, S. Chakraborty, “Tunnelling mechanism in noncommutative space with generalized uncertainty principle and Bohr-like black hole”, Adv. High Energy Phys., 2018 (2018), 9851598, 9 pp. | DOI | MR
[50] B.-S. Lin, T.-H. Heng, “Energy spectra of the harmonic oscillator in a generalized noncommutative phase space of arbitrary dimension”, Chinese Phys. Lett., 28:7 (2011), 070303, 4 pp. | DOI
[51] I. Dadic, L. Jonke, S. Meljanac, “Harmonic oscillator on noncommutative spaces”, Acta Phys. Slov., 55:2 (2005), 149–164, arXiv: \href{http://arxiv.org/abs/hep-th/0301066}
[52] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 1988 | MR
[53] R. P. Feynman, The principle of least action in quantum mechanics, Ph.D. thesis, Princeton Univ., Princeton, 1942; reprinted in: Feynman's Thesis – A New Approach to Quantum Theory, ed. L. M. Brown, World Sci., Singapore, 2005, 1–69 | DOI | MR
[54] J. D. Bekenstein, “Black holes and entropy”, Phys. Rev. D, 7:8 (1973), 2333–2346 | DOI | MR
[55] S. W. Hawking, “Particle creation by black holes”, Commun. Math. Phys., 43:3 (1975), 199–220 | DOI | MR
[56] H.-P. Yan, W.-B. Liu, “The third order correction on Hawking radiation and entropy conservation during black hole evaporation process”, Phys. Lett. B, 759 (2016), 293–297 | DOI
[57] G. Scharf, “Microcanonical quantum statistics of Schwarzschild black holes”, Nuovo Cimento B, 113:6 (1998), 821–824, arXiv: gr-qc/9711020 | MR
[58] S. W. Hawking, “Black holes and thermodynamics”, Phys. Rev. D, 13:2 (1976), 191–197 | DOI
[59] B. Harms, Y. Leblanc, “Statistical mechanics of black holes”, Phys. Rev. D, 46:6 (1992), 2334–2340, arXiv: hep-th/9205021 | DOI | MR
[60] C. Corda, “Effective temperature, Hawking radiation and quasinormal modes”, Internat. J. Modern Phys. D, 21:11 (2012), 1242023, 11 pp., arXiv: 1205.5251 | DOI | MR
[61] C. Corda, “Effective temperature for black holes”, JHEP, 08 (2011), 101, arXiv: 1107.5334 | DOI
[62] M. Parikh, F. Wilczek, “Hawking radiation as tunneling”, Phys. Rev. Lett., 85:24 (2000), 5042–5045, arXiv: hep-th/9907001 | DOI | MR
[63] R. Banerjee, B. R. Majhi, “Quantum tunneling beyond semiclassical approximation”, JHEP, 06 (2008), 095, 20 pp. | DOI | MR
[64] M. Angheben, M. Nadalini, L. Vanzo, S. Zerbini, “Hawking radiation as tunneling for extremal and rotating black holes”, JHEP, 05 (2005), 014, 19 pp., arXiv: hep-th/0503081 | DOI | MR
[65] M. Arzano, A. J. M. Medved, E. C. Vagenas, “Hawking radiation as tunneling through the quantum horizon”, JHEP, 09 (2005), 037, 14 pp. | DOI | MR
[66] R. Banerjee, B. R. Majhi, “Hawking black body spectrum from tunneling mechanism”, Phys. Lett. B, 675:2 (2009), 243–245 | DOI | MR
[67] C. Corda, “Non-strictly black body spectrum from the tunnelling mechanism”, Ann. Phys., 337 (2013), 49–54, arXiv: 1305.4529 | DOI | MR
[68] S. Z. Yang, H. L. Li, Q. Q. Jiang, M. Q. Liu, “The research on the quantum tunneling characteristics and the radiation spectrum of the stationary axisymmetric black hole”, Sci. China Ser. G, 50:2 (2007), 249–260 | DOI
[69] J. W. York, Jr., “Dynamical origin of black-hole radiance”, Phys. Rev. D, 28:12 (1983), 2929–2945 | DOI | MR
[70] N. Bohr, “Über die Serienspektra der Elemente”, Z. Phys., 2:5 (1920), 423–469 | DOI
[71] L. Motl, “An analytical computation of asymptotic Schwarzschild quasinormal frequencies”, Adv. Theor. Math. Phys., 6:6 (2003), 1135–1162 | DOI | MR
[72] G. Dvali, C. Gomez, “Black hole's quantum $N$-portrait”, Fortsch. Phys., 61:7–8 (2013), 742–767 | DOI | MR
[73] K. V. Krasnov, “Quantum geometry and thermal radiation from black holes”, Class. Quantum Grav., 16:2 (1999), 563–578, arXiv: gr-qc/9710006 | DOI | MR
[74] Y. Yoon, “Quantum corrections to the Hawking radiation spectrum”, J. Korean Phys. Soc., 68:6 (2016), 730–734 | DOI
[75] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D, 14:10 (1976), 2460–2475 | DOI | MR
[76] S. W. Hawking, “Information loss in black holes”, Phys. Rev. D, 72:8 (2005), 084013, 4 pp., arXiv: hep-th/0507171 | DOI | MR
[77] J. J. Sakurai, Modern Quantum Mechanics, Addison-Wesley, Reading, MA, 2006
[78] G. 't Hooft, “The scattering matrix approach for the quantum black hole: an overview”, Internat. J. Modern Phys. A, 11:26 (1996), 4623–4688, arXiv: gr-qc/9607022 | DOI | MR
[79] S. D. Mathur, “The information paradox: Conflicts and resolutions”, Pramana, 79:5 (2012), 1059–1073, arXiv: 1201.2079 | DOI
[80] A. Saini, D. Stojkovic, “Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse”, Phys. Rev. D, 89:4 (2014), 044003, 8 pp., arXiv: 1401.6182 | DOI
[81] E. Greenwood, D. Stojkovic, “Quantum gravitational collapse: non-singularity and non-locality”, JHEP, 06 (2008), 042, 14 pp., arXiv: 0802.4087 | DOI | MR
[82] J. E. Wang, E. Greenwood, D. Stojkovic, “Schrödinger formalism, black hole horizons, and singularity behavior”, Phys. Rev. D, 80:12 (2009), 124027, 10 pp., arXiv: 0906.3250 | DOI | MR
[83] A. Davidson, “From Planck area to graph theory: Topologically distinct black hole microstates”, Phys. Rev. D, 100:8 (2019), 081502, 7 pp., arXiv: 1907.03090 | DOI | MR
[84] A. Davidson, “Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state”, Phys. Lett. B, 780 (2018), 29–33, arXiv: 1708.00987 | DOI