Total, classical and quantum uncertainties generated by channels
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 347-369 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

States and channels are fundamental and instrumental ingredients of quantum mechanics. Their interplay not only encodes information about states but also reflects uncertainties of channels. In order to quantify intrinsic uncertainties generated by channels, we exploit the action of a channel on an orthonormal basis in the space of observables from three different perspectives. The first concerns the uncertainty generated by a channel via noncommutativity between the Kraus operators of the channel and an orthonormal basis of observables, which can be interpreted as a kind of quantifier of the total uncertainty generated by a channel. The second concerns the uncertainty in terms of the Tsallis-$2$ entropy of the Jamiołkowski–Choi state associated with the channel via the channel–state duality, which can be interpreted as a quantifier of the classical uncertainty generated by a channel. The third concerns the uncertainty of a channel as the deviation from the identity channel in terms of the Hilbert–Schmidt distance, which can be interpreted as a kind of quantifier of the quantum uncertainty generated by a channel. We reveal basic properties of these quantifiers of uncertainties and establish a relation between them. We identify channels producing the minimal/maximal uncertainties for these three quantifiers. Finally, we explicitly evaluate these uncertainty quantifiers for various important channels, use them to gain insights into the channels from an information-theoretic perspective, and comparatively study the quantifiers.
Keywords: channel, total uncertainty, classical uncertainty, quantum uncertainty, Wigner–Yanase skew information, disturbance.
@article{TMF_2022_213_2_a6,
     author = {Yizhou Liu and Shunlong Luo and Yuan Sun},
     title = {Total, classical and quantum uncertainties generated by channels},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {347--369},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/}
}
TY  - JOUR
AU  - Yizhou Liu
AU  - Shunlong Luo
AU  - Yuan Sun
TI  - Total, classical and quantum uncertainties generated by channels
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 347
EP  - 369
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/
LA  - ru
ID  - TMF_2022_213_2_a6
ER  - 
%0 Journal Article
%A Yizhou Liu
%A Shunlong Luo
%A Yuan Sun
%T Total, classical and quantum uncertainties generated by channels
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 347-369
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/
%G ru
%F TMF_2022_213_2_a6
Yizhou Liu; Shunlong Luo; Yuan Sun. Total, classical and quantum uncertainties generated by channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 347-369. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/

[1] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik”, Z. Phys., 43:3–4 (1927), 172–198 | DOI

[2] H. P. Robertson, “The uncertainty principle”, Phys. Rev., 34:1 (1929), 163–164 | DOI

[3] E. Schrödinger, “About Heisenberg uncertainty relation”, Sitzungsber. Preuß. Akad. Wiss. Berlin Math. Phys., 19 (1930), 296–303

[4] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl

[5] K. Korzekwa, M. Lostaglio, D. Jennings, T. Rudolph, “Quantum and classical entropic uncertainty relations”, Phys. Rev. A, 89:4 (2014), 042122, 9 pp., arXiv: 1402.1143 | DOI

[6] M. L. W. Basso, J. Maziero, “An uncertainty view on complementarity and a complementarity view on uncertainty”, Quant. Inf. Process., 20:6 (2021), 201, 21 pp., arXiv: 2007.05053 | DOI | MR

[7] S. Fu, S. Luo, “From wave-particle duality to wave-particle-mixedness triality: an uncertainty approach”, Commun. Theor. Phys., 74:3 (2022), 035103, 9 pp. | DOI | MR

[8] S. Luo, “Quantum uncertainty of mixed states based on skew information”, Phys. Rev. A, 73:2 (2006), 022324, 4 pp. | DOI | MR

[9] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR

[10] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI

[11] Y. Zhang, S. Luo, “Quantum states as observables: their variance and nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211, 6 pp. | DOI | MR

[12] Y. Sun, S. Luo, “Coherence as uncertainty”, Phys. Rev. A, 103:4 (2021), 042423, 9 pp. | DOI | MR

[13] C. A. Fuchs, A. Peres, “Quantum-state disturbance versus information gain: Uncertainty relations for quantum information”, Phys. Rev. A, 53:4 (1996), 2038–2045, arXiv: quant-ph/9512023 | DOI

[14] L. Maccone, “Entropic information-disturbance tradeoff”, Europhys. Lett., 77:4 (2007), 40002, 5 pp., arXiv: quant-ph/0604038 | DOI | MR

[15] S. Luo, “Information conservation and entropy change in quantum measurements”, Phys. Rev. A, 82:5 (2010), 052103, 5 pp. | DOI | MR

[16] Y. W. Cheong, S.-W. Lee, “Balance between information gain and reversibility in weak measurement”, Phys. Rev. Lett., 109:15 (2012), 150402, 5 pp., arXiv: 1203.4909 | DOI

[17] T. Shitara, Y. Kuramochi, M. Ueda, “Trade-off relation between information and disturbance in quantum measurement”, Phys. Rev. A, 93:3 (2016), 032134, 5 pp., arXiv: 1505.01320 | DOI | MR

[18] H. Terashima, “Information, fidelity, and reversibility in general quantum measurements”, Phys. Rev. A, 93:2 (2016), 022104, 12 pp., arXiv: 1511.05308 | DOI

[19] S.-W. Lee, J. Kim, H. Nha, “Complete information balance in quantum measurement”, Quantum, 5 (2021), 414, 13 pp., arXiv: 1912.10592 | DOI

[20] Č. Brukner, A. Zeilinger, “Operationally invariant information in quantum measurements”, Phys. Rev. Lett., 83:17 (1999), 3354–3357, arXiv: quant-ph/0005084 | DOI | MR

[21] Č. Brukner, A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements”, Phys. Rev. A, 63:2 (2001), 022113, 10 pp., arXiv: ; Erratum, Phys. Rev. A, 67:4 (2003), 049901, 1 pp. quant-ph/0006087 | DOI | DOI

[22] Sh. L. Lo, “Ob invariantnoi informatsii Bruknera–Zailingera”, TMF, 151:2 (2007), 302–310 | DOI | DOI | MR | Zbl

[23] A. E. Rastegin, “Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies”, Eur. Phys. J. D, 67:12 (2013), 269, 14 pp., arXiv: 1303.4467 | DOI

[24] A. E. Rastegin, “On the Brukner–Zeilinger approach to information in quantum measurements”, Proc. R. Soc. A, 471:2183 (2015), 0435, 17 pp. | DOI

[25] B. Chen, S.-M. Fei, “Total variance and invariant information in complementary measurements”, Commun. Theor. Phys., 72:6 (2020), 065106, 5 pp., arXiv: 2005.11521 | DOI | MR

[26] S. Lloyd, “Capacity of the noisy quantum channel”, Phys. Rev. A, 55:3 (1997), 1613–1622 | DOI | MR

[27] P. Zanardi, C. Zalka, L. Faoro, “Entangling power of quantum evolutions”, Phys. Rev. A, 62:3 (2000), 030301, 4 pp., arXiv: quant-ph/0005031 | DOI | MR

[28] D. K. L. Oi, “Interference of quantum channels”, Phys. Rev. Lett., 91:6 (2003), 067902, 4 pp., arXiv: quant-ph/0303178 | DOI

[29] T. Abad, V. Karimipour, L. Memarzadeh, “Power of quantum channels for creating quantum correlations”, Phys. Rev. A, 86:6 (2012), 062316, 9 pp., arXiv: 1211.4805 | DOI

[30] X. Hu, H. Fan, D. L. Zhou, W.-M. Liu, “Quantum correlating power of local quantum channels”, Phys. Rev. A, 87:3 (2013), 032340, 5 pp., arXiv: 1203.6149 | DOI

[31] A. Mani, V. Karimipour, “Cohering and decohering power of quantum channels”, Phys. Rev. A, 92:3 (2015), 032331, 9 pp., arXiv: 1506.02304 | DOI

[32] K. Bu, A. Kumar, L. Zhang, J. Wu, “Cohering power of quantum operations”, Phys. Lett. A, 381:19 (2017), 1670–1676 | DOI | MR

[33] N. Li, S. Luo, Y. Mao, “Quantumness-generating capability of quantum dynamics”, Quantum Inf. Process., 17:4 (2018), 74, 18 pp. | DOI | MR

[34] F. Shahbeigi, S. J. Akhtarshenas, “Quantumness of quantum channels”, Phys. Rev. A, 98:4 (2018), 042313, 7 pp., arXiv: 1808.00754 | DOI

[35] G. Gour, M. M. Wilde, “Entropy of a quantum channel”, Phys. Rev. Res., 3:2 (2021), 023096, 26 pp. | DOI

[36] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefinitness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278 | DOI | MR

[37] M.-D. Choi, “Completely positive maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290 | DOI | MR

[38] M. Jiang, S. Luo, S. Fu, “Channel-state duality”, Phys. Rev. A, 87:2 (2013), 022310, 8 pp. | DOI

[39] Á. Rivas, M. Müller, “Quantifying spatial correlations of general quantum dynamics”, New J. Phys., 17:6 (2015), 062001, 11 pp. | DOI | MR

[40] K. Korzekwa, S. Czachórski, Z. Puchała, K. .{Z}yczkowski, “Coherifying quantum channels”, New J. Phys., 20:4 (2018), 043028, 26 pp. | DOI

[41] C. Datta, S. Sazim, A. K. Pati, P. Agrawal, “Coherence of quantum channels”, Ann. Phys. (N. Y.), 397 (2018), 243–258, arXiv: 1710.05015 | DOI | MR

[42] J. Xu, “Coherence of quantum channels”, Phys. Rev. A, 100:5 (2019), 052311, 8 pp., arXiv: 1907.07289 | DOI | MR

[43] S. Luo, “Heisenberg uncertainty relation for mixed states”, Phys. Rev. A, 72:4 (2005), 042110, 3 pp. | DOI

[44] Y. Sun, N. Li, “The uncertainty of quantum channels in terms of variance”, Quantum Inf. Process., 20:1 (2021), 25, 15 pp. | DOI | MR

[45] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR

[46] M. L. Lyra, C. Tsallis, “Nonextensivity and multifractality in low-dimensional dissipative systems”, Phys. Rev. Lett., 80:1 (1998), 53–56, arXiv: cond-mat/9709226 | DOI

[47] D. Pérez-García, M. M. Wolf, D. Petz, M. B. Ruskai, “Contractivity of positive and trace-preserving maps under $L_p$ norms”, J. Math. Phys., 47:8 (2006), 083506, 5 pp., arXiv: math-ph/0601063 | DOI | MR

[48] L. Henderson, V. Vedral, “Classical, quantum and total correlations”, J. Phys. A: Math. Gen., 34:35 (2001), 6899–6905, arXiv: quant-ph/0105028 | DOI | MR | Zbl

[49] H. Ollivier, W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp., arXiv: quant-ph/0105072 | DOI

[50] S. Luo, “Quantum discord for two-qubit systems”, Phys. Rev. A, 77:4 (2008), 042303, 6 pp. | DOI

[51] S. Luo, “Statistics of local value in quantum mechanics”, Inter. J. Theor. Phys., 41:9 (2002), 1713–1731 | DOI | MR

[52] G. Lüders, “Über die Zustandsänderung durch den Meßprozeß”, Ann. Physik, 8 (1951), 322–328 | MR

[53] S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum”, Phys. Rev. A, 77:2 (2008), 022301, 5 pp. | DOI

[54] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys, 45:6 (2004), 2171–2180, arXiv: quant-ph/0310075 | DOI | MR | Zbl

[55] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357, arXiv: quant-ph/0203003 | DOI | MR

[56] F. Buscemi, G. Chiribella, G. M. D'Ariano, “Inverting quantum decoherence by classical feedback from the environment”, Phys. Rev. Lett., 95:9 (2005), 090501, 4 pp., arXiv: quant-ph/0504195 | DOI

[57] K. Brádler, P. Hayden, D. Touchette, M. M. Wilde, “Trade-off capacities of the quantum Hadamard channels”, Phys. Rev. A, 81:6 (2010), 062312, 23 pp., arXiv: 1001.1732 | DOI

[58] S. Luo, S. Fu, N. Li, “Decorrelating capabilities of operations with application to decoherence”, Phys. Rev. A, 82:5 (2010), 052122, 12 pp. | DOI

[59] Y. Aharonov, D. Z. Albert, L. Vaidman, “How the result of a measurement of a component of the spin of a spin-$1/2$ particle can turn out to be 100”, Phys. Rev. Lett., 60:14 (1998), 1351–1354 | DOI

[60] O. Oreshkov, T. A. Brun, “Weak measurements are universal”, Phys. Rev. Lett., 95:11 (2005), 110409, 4 pp., arXiv: quant-ph/0503017 | DOI

[61] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70:13 (1993), 1895–1899 | DOI | MR | Zbl

[62] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation”, Phys. Rev. A, 60:3 (1999), 1888–1898 | DOI | MR

[63] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A, 59:6 (1999), 4206–4216 | DOI

[64] K. Banaszek, “Optimal quantum teleportation with an arbitrary pure state”, Phys. Rev. A, 62:2 (2000), 024301, 4 pp., arXiv: quant-ph/0002088 | DOI