@article{TMF_2022_213_2_a6,
author = {Yizhou Liu and Shunlong Luo and Yuan Sun},
title = {Total, classical and quantum uncertainties generated by channels},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {347--369},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/}
}
TY - JOUR AU - Yizhou Liu AU - Shunlong Luo AU - Yuan Sun TI - Total, classical and quantum uncertainties generated by channels JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 347 EP - 369 VL - 213 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/ LA - ru ID - TMF_2022_213_2_a6 ER -
Yizhou Liu; Shunlong Luo; Yuan Sun. Total, classical and quantum uncertainties generated by channels. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 347-369. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a6/
[1] W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik”, Z. Phys., 43:3–4 (1927), 172–198 | DOI
[2] H. P. Robertson, “The uncertainty principle”, Phys. Rev., 34:1 (1929), 163–164 | DOI
[3] E. Schrödinger, “About Heisenberg uncertainty relation”, Sitzungsber. Preuß. Akad. Wiss. Berlin Math. Phys., 19 (1930), 296–303
[4] Sh. L. Luo, “Kvantovaya i klassicheskaya neopredelennosti”, TMF, 143:2 (2005), 231–240 | DOI | DOI | MR | Zbl
[5] K. Korzekwa, M. Lostaglio, D. Jennings, T. Rudolph, “Quantum and classical entropic uncertainty relations”, Phys. Rev. A, 89:4 (2014), 042122, 9 pp., arXiv: 1402.1143 | DOI
[6] M. L. W. Basso, J. Maziero, “An uncertainty view on complementarity and a complementarity view on uncertainty”, Quant. Inf. Process., 20:6 (2021), 201, 21 pp., arXiv: 2007.05053 | DOI | MR
[7] S. Fu, S. Luo, “From wave-particle duality to wave-particle-mixedness triality: an uncertainty approach”, Commun. Theor. Phys., 74:3 (2022), 035103, 9 pp. | DOI | MR
[8] S. Luo, “Quantum uncertainty of mixed states based on skew information”, Phys. Rev. A, 73:2 (2006), 022324, 4 pp. | DOI | MR
[9] S. Luo, Y. Sun, “Quantum coherence versus quantum uncertainty”, Phys. Rev. A, 96:2 (2017), 022130, 5 pp. | DOI | MR
[10] S. Luo, Y. Sun, “Coherence and complementarity in state-channel interaction”, Phys. Rev. A, 98:1 (2018), 012113, 8 pp. | DOI
[11] Y. Zhang, S. Luo, “Quantum states as observables: their variance and nonclassicality”, Phys. Rev. A, 102:6 (2020), 062211, 6 pp. | DOI | MR
[12] Y. Sun, S. Luo, “Coherence as uncertainty”, Phys. Rev. A, 103:4 (2021), 042423, 9 pp. | DOI | MR
[13] C. A. Fuchs, A. Peres, “Quantum-state disturbance versus information gain: Uncertainty relations for quantum information”, Phys. Rev. A, 53:4 (1996), 2038–2045, arXiv: quant-ph/9512023 | DOI
[14] L. Maccone, “Entropic information-disturbance tradeoff”, Europhys. Lett., 77:4 (2007), 40002, 5 pp., arXiv: quant-ph/0604038 | DOI | MR
[15] S. Luo, “Information conservation and entropy change in quantum measurements”, Phys. Rev. A, 82:5 (2010), 052103, 5 pp. | DOI | MR
[16] Y. W. Cheong, S.-W. Lee, “Balance between information gain and reversibility in weak measurement”, Phys. Rev. Lett., 109:15 (2012), 150402, 5 pp., arXiv: 1203.4909 | DOI
[17] T. Shitara, Y. Kuramochi, M. Ueda, “Trade-off relation between information and disturbance in quantum measurement”, Phys. Rev. A, 93:3 (2016), 032134, 5 pp., arXiv: 1505.01320 | DOI | MR
[18] H. Terashima, “Information, fidelity, and reversibility in general quantum measurements”, Phys. Rev. A, 93:2 (2016), 022104, 12 pp., arXiv: 1511.05308 | DOI
[19] S.-W. Lee, J. Kim, H. Nha, “Complete information balance in quantum measurement”, Quantum, 5 (2021), 414, 13 pp., arXiv: 1912.10592 | DOI
[20] Č. Brukner, A. Zeilinger, “Operationally invariant information in quantum measurements”, Phys. Rev. Lett., 83:17 (1999), 3354–3357, arXiv: quant-ph/0005084 | DOI | MR
[21] Č. Brukner, A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements”, Phys. Rev. A, 63:2 (2001), 022113, 10 pp., arXiv: ; Erratum, Phys. Rev. A, 67:4 (2003), 049901, 1 pp. quant-ph/0006087 | DOI | DOI
[22] Sh. L. Lo, “Ob invariantnoi informatsii Bruknera–Zailingera”, TMF, 151:2 (2007), 302–310 | DOI | DOI | MR | Zbl
[23] A. E. Rastegin, “Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies”, Eur. Phys. J. D, 67:12 (2013), 269, 14 pp., arXiv: 1303.4467 | DOI
[24] A. E. Rastegin, “On the Brukner–Zeilinger approach to information in quantum measurements”, Proc. R. Soc. A, 471:2183 (2015), 0435, 17 pp. | DOI
[25] B. Chen, S.-M. Fei, “Total variance and invariant information in complementary measurements”, Commun. Theor. Phys., 72:6 (2020), 065106, 5 pp., arXiv: 2005.11521 | DOI | MR
[26] S. Lloyd, “Capacity of the noisy quantum channel”, Phys. Rev. A, 55:3 (1997), 1613–1622 | DOI | MR
[27] P. Zanardi, C. Zalka, L. Faoro, “Entangling power of quantum evolutions”, Phys. Rev. A, 62:3 (2000), 030301, 4 pp., arXiv: quant-ph/0005031 | DOI | MR
[28] D. K. L. Oi, “Interference of quantum channels”, Phys. Rev. Lett., 91:6 (2003), 067902, 4 pp., arXiv: quant-ph/0303178 | DOI
[29] T. Abad, V. Karimipour, L. Memarzadeh, “Power of quantum channels for creating quantum correlations”, Phys. Rev. A, 86:6 (2012), 062316, 9 pp., arXiv: 1211.4805 | DOI
[30] X. Hu, H. Fan, D. L. Zhou, W.-M. Liu, “Quantum correlating power of local quantum channels”, Phys. Rev. A, 87:3 (2013), 032340, 5 pp., arXiv: 1203.6149 | DOI
[31] A. Mani, V. Karimipour, “Cohering and decohering power of quantum channels”, Phys. Rev. A, 92:3 (2015), 032331, 9 pp., arXiv: 1506.02304 | DOI
[32] K. Bu, A. Kumar, L. Zhang, J. Wu, “Cohering power of quantum operations”, Phys. Lett. A, 381:19 (2017), 1670–1676 | DOI | MR
[33] N. Li, S. Luo, Y. Mao, “Quantumness-generating capability of quantum dynamics”, Quantum Inf. Process., 17:4 (2018), 74, 18 pp. | DOI | MR
[34] F. Shahbeigi, S. J. Akhtarshenas, “Quantumness of quantum channels”, Phys. Rev. A, 98:4 (2018), 042313, 7 pp., arXiv: 1808.00754 | DOI
[35] G. Gour, M. M. Wilde, “Entropy of a quantum channel”, Phys. Rev. Res., 3:2 (2021), 023096, 26 pp. | DOI
[36] A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefinitness of operators”, Rep. Math. Phys., 3:4 (1972), 275–278 | DOI | MR
[37] M.-D. Choi, “Completely positive maps on complex matrices”, Linear Algebra Appl., 10:3 (1975), 285–290 | DOI | MR
[38] M. Jiang, S. Luo, S. Fu, “Channel-state duality”, Phys. Rev. A, 87:2 (2013), 022310, 8 pp. | DOI
[39] Á. Rivas, M. Müller, “Quantifying spatial correlations of general quantum dynamics”, New J. Phys., 17:6 (2015), 062001, 11 pp. | DOI | MR
[40] K. Korzekwa, S. Czachórski, Z. Puchała, K. .{Z}yczkowski, “Coherifying quantum channels”, New J. Phys., 20:4 (2018), 043028, 26 pp. | DOI
[41] C. Datta, S. Sazim, A. K. Pati, P. Agrawal, “Coherence of quantum channels”, Ann. Phys. (N. Y.), 397 (2018), 243–258, arXiv: 1710.05015 | DOI | MR
[42] J. Xu, “Coherence of quantum channels”, Phys. Rev. A, 100:5 (2019), 052311, 8 pp., arXiv: 1907.07289 | DOI | MR
[43] S. Luo, “Heisenberg uncertainty relation for mixed states”, Phys. Rev. A, 72:4 (2005), 042110, 3 pp. | DOI
[44] Y. Sun, N. Li, “The uncertainty of quantum channels in terms of variance”, Quantum Inf. Process., 20:1 (2021), 25, 15 pp. | DOI | MR
[45] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52:1–2 (1988), 479–487 | DOI | MR
[46] M. L. Lyra, C. Tsallis, “Nonextensivity and multifractality in low-dimensional dissipative systems”, Phys. Rev. Lett., 80:1 (1998), 53–56, arXiv: cond-mat/9709226 | DOI
[47] D. Pérez-García, M. M. Wolf, D. Petz, M. B. Ruskai, “Contractivity of positive and trace-preserving maps under $L_p$ norms”, J. Math. Phys., 47:8 (2006), 083506, 5 pp., arXiv: math-ph/0601063 | DOI | MR
[48] L. Henderson, V. Vedral, “Classical, quantum and total correlations”, J. Phys. A: Math. Gen., 34:35 (2001), 6899–6905, arXiv: quant-ph/0105028 | DOI | MR | Zbl
[49] H. Ollivier, W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp., arXiv: quant-ph/0105072 | DOI
[50] S. Luo, “Quantum discord for two-qubit systems”, Phys. Rev. A, 77:4 (2008), 042303, 6 pp. | DOI
[51] S. Luo, “Statistics of local value in quantum mechanics”, Inter. J. Theor. Phys., 41:9 (2002), 1713–1731 | DOI | MR
[52] G. Lüders, “Über die Zustandsänderung durch den Meßprozeß”, Ann. Physik, 8 (1951), 322–328 | MR
[53] S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum”, Phys. Rev. A, 77:2 (2008), 022301, 5 pp. | DOI
[54] J. M. Renes, R. Blume-Kohout, A. J. Scott, C. M. Caves, “Symmetric informationally complete quantum measurements”, J. Math. Phys, 45:6 (2004), 2171–2180, arXiv: quant-ph/0310075 | DOI | MR | Zbl
[55] R. F. Werner, A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels”, J. Math. Phys., 43:9 (2002), 4353–4357, arXiv: quant-ph/0203003 | DOI | MR
[56] F. Buscemi, G. Chiribella, G. M. D'Ariano, “Inverting quantum decoherence by classical feedback from the environment”, Phys. Rev. Lett., 95:9 (2005), 090501, 4 pp., arXiv: quant-ph/0504195 | DOI
[57] K. Brádler, P. Hayden, D. Touchette, M. M. Wilde, “Trade-off capacities of the quantum Hadamard channels”, Phys. Rev. A, 81:6 (2010), 062312, 23 pp., arXiv: 1001.1732 | DOI
[58] S. Luo, S. Fu, N. Li, “Decorrelating capabilities of operations with application to decoherence”, Phys. Rev. A, 82:5 (2010), 052122, 12 pp. | DOI
[59] Y. Aharonov, D. Z. Albert, L. Vaidman, “How the result of a measurement of a component of the spin of a spin-$1/2$ particle can turn out to be 100”, Phys. Rev. Lett., 60:14 (1998), 1351–1354 | DOI
[60] O. Oreshkov, T. A. Brun, “Weak measurements are universal”, Phys. Rev. Lett., 95:11 (2005), 110409, 4 pp., arXiv: quant-ph/0503017 | DOI
[61] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels”, Phys. Rev. Lett., 70:13 (1993), 1895–1899 | DOI | MR | Zbl
[62] M. Horodecki, P. Horodecki, R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation”, Phys. Rev. A, 60:3 (1999), 1888–1898 | DOI | MR
[63] M. Horodecki, P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols”, Phys. Rev. A, 59:6 (1999), 4206–4216 | DOI
[64] K. Banaszek, “Optimal quantum teleportation with an arbitrary pure state”, Phys. Rev. A, 62:2 (2000), 024301, 4 pp., arXiv: quant-ph/0002088 | DOI