Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 320-346
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the system of discrete equations on the quadrilateral graph. We introduce the notion of the set of independent minimal-order integrals along the characteristic directions, as well as the concept of the characteristic Lie–Rinehart algebra for the system of equations on the graph. We prove that the system admits the complete set of integrals along the considered direction if and only if the dimension of the characteristic algebra corresponding to this direction is finite. In other words, the system is Darboux-integrable if and only if its characteristic algebras in both directions are finite dimensional. As examples of Darboux-integrable systems of discrete equations on quadrilateral graphs we consider reductions of Hirota–Miwa equation, the $Y$-system, and the Kadomtsev–Petviashvili lattice equation and construct the characteristic algebras for them.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
discrete equations, Darboux-integrability, Lie–Rinehart algebra, integrals, $Y$-system, Kadomtsev–Petviashvili lattice equation.
Mots-clés : Hirota–Miwa equation
                    
                  
                
                
                Mots-clés : Hirota–Miwa equation
@article{TMF_2022_213_2_a5,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {320--346},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/}
}
                      
                      
                    TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 320 EP - 346 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/ LA - ru ID - TMF_2022_213_2_a5 ER -
%0 Journal Article %A I. T. Habibullin %A A. R. Khakimova %T Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 320-346 %V 213 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/ %G ru %F TMF_2022_213_2_a5
I. T. Habibullin; A. R. Khakimova. Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 320-346. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/