Mots-clés : Hirota–Miwa equation
@article{TMF_2022_213_2_a5,
author = {I. T. Habibullin and A. R. Khakimova},
title = {Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {320--346},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/}
}
TY - JOUR AU - I. T. Habibullin AU - A. R. Khakimova TI - Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 320 EP - 346 VL - 213 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/ LA - ru ID - TMF_2022_213_2_a5 ER -
%0 Journal Article %A I. T. Habibullin %A A. R. Khakimova %T Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 320-346 %V 213 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/ %G ru %F TMF_2022_213_2_a5
I. T. Habibullin; A. R. Khakimova. Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 320-346. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/
[1] A. Kuniba, T. Nakanishi, J. Suzuki, “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp. | DOI | MR
[2] E. Date, M. Jimbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR
[3] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Backlund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR
[4] B. G. Konopelchenko, W. K. Schief, “Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy”, J. Phys. A: Math. Gen., 35:29 (2002), 6125–6144 | DOI | MR
[5] R. Hirota, “Nonlinear partial difference equations. II. Discrete-time Toda equations”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR
[6] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR
[7] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR
[8] L. V. Bogdanov, B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy”, J. Math. Phys., 39:9 (1996), 4683–4700 ; “Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies”, J. Math. Phys., 39:9 (1997), 4701–4728, arXiv: solv-int/9705009 | DOI | MR | DOI
[9] I. Krichever, P. Wiegmann, A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396, arXiv: hep-th/9704090 | DOI | MR
[10] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR
[11] A. K. Pogrebkov, “Vysshie raznostnye uravneniya Khiroty i ikh reduktsii”, TMF, 197:3 (2018), 444–463 | DOI | DOI | MR
[12] E. V. Ferapontov, V. S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR
[13] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl
[14] E. V. Ferapontov, L. Hadjikos, K. R. Khusnutdinova, “Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian”, Int. Math. Res. Not. IMRN, 2010:3 (2010), 496–535 | DOI | MR
[15] E. V. Ferapontov, K. R. Khusnutdinova, “Hydrodynamic reductions of multidimensional dispersionless PDEs: the test for integrability”, J. Math. Phys., 45:6 (2004), 2365–2377, arXiv: nlin/0312015 | DOI | MR
[16] E. V. Ferapontov, B. S. Kruglikov, “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differ. Geom., 97:2 (2014), 215–254 | DOI | MR
[17] I. Habibullin, M. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA, 13 (2015), 073, 26 pp. | MR
[18] I. T. Khabibullin, M. N. Kuznetsova, “O klassifikatsionnom algoritme integriruemykh dvumerizovannykh tsepochek na osnove algebr Li–Rainkharta”, TMF, 203:1 (2020), 161–173 | DOI | DOI | MR
[19] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie algebras of integrable differential-difference equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, 34 pp. | DOI | MR
[20] A. V. Zhiber, M. N. Kuznetsova, “Integraly i kharakteristicheskie koltsa Li poludiskretnykh sistem uravnenii”, Ufimsk. matem. zhurn., 13:2 (2021), 25–35 | DOI | MR
[21] I. T. Habibullin, M. N. Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A: Math. Theor., 54:50 (2021), 505201, 20 pp. | DOI | MR
[22] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 1:1 (1899), 31–78 | MR
[23] É. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre (deuxième mémoire)”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 1:4 (1899), 439–463 | MR
[24] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR | Zbl
[25] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1(337) (2001), 63–106 | DOI | DOI | MR | Zbl
[26] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, In-t kompyuter. issled., M., Izhevsk, 2012
[27] E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505, 15 pp., arXiv: 2005.06738 | DOI | MR
[28] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981
[29] A. V. Zhiber, F. Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotiki ikh reshenii, BNTs UrO AN SSSR, Ufa, 1991, 14–32
[30] A. V. Zhiber, R. D. Murtazina, “O kharakteristicheskikh algebrakh Li uravnenii $u_{xy}=f(u,u_x)$”, Fundament. i prikl. matem., 12:7 (2006), 65–78 | DOI | MR | Zbl
[31] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 1–39 | DOI
[32] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x}=t_x+d(t,t_1)$”, J. Math. Phys., 50:10 (2009), 102710, 23 pp. | DOI | MR
[33] G. S. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR
[34] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR
[35] D. V. Millionschikov, S. V. Smirnov, “Kharakteristicheskie algebry i integriruemye sistemy eksponentsialnogo tipa”, Ufimsk. matem. zhurn., 13:2 (2021), 44–73 | DOI | MR
[36] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205, 23 pp. | DOI | MR
[37] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal H4 and H4 families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205, 26 pp. | DOI | MR
[38] P. Xenitidis, “Determining the symmetries of difference equations”, Proc. Roy. Soc. A, 474:2219 (2018), 20180340, 20 pp. | DOI | MR
[39] I. M. Anderson, N. Kamran, “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR
[40] V. E. Adler, S. Ya. Startsev, “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | DOI | MR | Zbl
[41] A. V. Zhiber, O. S. Kostrigina, “Kharakteristicheskie algebry nelineinykh giperbolicheskikh sistem uravnenii”, Zhurn. SFU. Ser. Matem. i fiz., 3:2 (2010), 173–184
[42] I. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp., arXiv: nlin.SI/0506027 | DOI | MR
[43] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR