Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 320-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the system of discrete equations on the quadrilateral graph. We introduce the notion of the set of independent minimal-order integrals along the characteristic directions, as well as the concept of the characteristic Lie–Rinehart algebra for the system of equations on the graph. We prove that the system admits the complete set of integrals along the considered direction if and only if the dimension of the characteristic algebra corresponding to this direction is finite. In other words, the system is Darboux-integrable if and only if its characteristic algebras in both directions are finite dimensional. As examples of Darboux-integrable systems of discrete equations on quadrilateral graphs we consider reductions of Hirota–Miwa equation, the $Y$-system, and the Kadomtsev–Petviashvili lattice equation and construct the characteristic algebras for them.
Keywords: discrete equations, Darboux-integrability, Lie–Rinehart algebra, integrals, $Y$-system, Kadomtsev–Petviashvili lattice equation.
Mots-clés : Hirota–Miwa equation
@article{TMF_2022_213_2_a5,
     author = {I. T. Habibullin and A. R. Khakimova},
     title = {Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {320--346},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/}
}
TY  - JOUR
AU  - I. T. Habibullin
AU  - A. R. Khakimova
TI  - Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 320
EP  - 346
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/
LA  - ru
ID  - TMF_2022_213_2_a5
ER  - 
%0 Journal Article
%A I. T. Habibullin
%A A. R. Khakimova
%T Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 320-346
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/
%G ru
%F TMF_2022_213_2_a5
I. T. Habibullin; A. R. Khakimova. Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 320-346. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a5/

[1] A. Kuniba, T. Nakanishi, J. Suzuki, “$T$-systems and $Y$-systems in integrable systems”, J. Phys. A: Math. Theor., 44:10 (2011), 103001, 146 pp. | DOI | MR

[2] E. Date, M. Jimbo, T. Miwa, “Method for generating discrete soliton equations. I”, J. Phys. Soc. Japan, 51:12 (1982), 4116–4124 | DOI | MR

[3] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, G. R. W. Quispel, “Backlund transformations and three-dimensional lattice equations”, Phys. Lett. A, 105:6 (1984), 267–272 | DOI | MR

[4] B. G. Konopelchenko, W. K. Schief, “Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy”, J. Phys. A: Math. Gen., 35:29 (2002), 6125–6144 | DOI | MR

[5] R. Hirota, “Nonlinear partial difference equations. II. Discrete-time Toda equations”, J. Phys. Soc. Japan, 43:6 (1977), 2074–2078 | DOI | MR

[6] R. Hirota, “Discrete analogue of a generalized Toda equation”, J. Phys. Soc. Japan, 50:11 (1981), 3785–3791 | DOI | MR

[7] T. Miwa, “On Hirota's difference equations”, Proc. Japan Acad. Ser. A, 58:1 (1982), 9–12 | DOI | MR

[8] L. V. Bogdanov, B. G. Konopelchenko, “Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy”, J. Math. Phys., 39:9 (1996), 4683–4700 ; “Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies”, J. Math. Phys., 39:9 (1997), 4701–4728, arXiv: solv-int/9705009 | DOI | MR | DOI

[9] I. Krichever, P. Wiegmann, A. Zabrodin, “Elliptic solutions to difference non-linear equations and related many-body problems”, Commun. Math. Phys., 193:2 (1998), 373–396, arXiv: hep-th/9704090 | DOI | MR

[10] A. V. Zabrodin, “Raznostnye uravneniya Khiroty”, TMF, 113:2 (1997), 179–230 | DOI | DOI | MR

[11] A. K. Pogrebkov, “Vysshie raznostnye uravneniya Khiroty i ikh reduktsii”, TMF, 197:3 (2018), 444–463 | DOI | DOI | MR

[12] E. V. Ferapontov, V. S. Novikov, I. Roustemoglou, “On the classification of discrete Hirota-type equations in 3D”, Int. Math. Res. Not. IMRN, 2015:13 (2015), 4933–4974 | DOI | MR

[13] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, UMN, 42:4(256) (1987), 3–53 | DOI | MR | Zbl

[14] E. V. Ferapontov, L. Hadjikos, K. R. Khusnutdinova, “Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian”, Int. Math. Res. Not. IMRN, 2010:3 (2010), 496–535 | DOI | MR

[15] E. V. Ferapontov, K. R. Khusnutdinova, “Hydrodynamic reductions of multidimensional dispersionless PDEs: the test for integrability”, J. Math. Phys., 45:6 (2004), 2365–2377, arXiv: nlin/0312015 | DOI | MR

[16] E. V. Ferapontov, B. S. Kruglikov, “Dispersionless integrable systems in 3D and Einstein–Weyl geometry”, J. Differ. Geom., 97:2 (2014), 215–254 | DOI | MR

[17] I. Habibullin, M. Poptsova, “Classification of a subclass of two-dimensional lattices via characteristic Lie rings”, SIGMA, 13 (2015), 073, 26 pp. | MR

[18] I. T. Khabibullin, M. N. Kuznetsova, “O klassifikatsionnom algoritme integriruemykh dvumerizovannykh tsepochek na osnove algebr Li–Rainkharta”, TMF, 203:1 (2020), 161–173 | DOI | DOI | MR

[19] I. T. Habibullin, A. R. Khakimova, “Characteristic Lie algebras of integrable differential-difference equations in 3D”, J. Phys. A: Math. Theor., 54:29 (2021), 295202, 34 pp. | DOI | MR

[20] A. V. Zhiber, M. N. Kuznetsova, “Integraly i kharakteristicheskie koltsa Li poludiskretnykh sistem uravnenii”, Ufimsk. matem. zhurn., 13:2 (2021), 25–35 | DOI | MR

[21] I. T. Habibullin, M. N. Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A: Math. Theor., 54:50 (2021), 505201, 20 pp. | DOI | MR

[22] E. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 1:1 (1899), 31–78 | MR

[23] É. Goursat, “Recherches sur quelques équations aux dérivées partielles du second ordre (deuxième mémoire)”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys., 1:4 (1899), 439–463 | MR

[24] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR | Zbl

[25] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, UMN, 56:1(337) (2001), 63–106 | DOI | DOI | MR | Zbl

[26] A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Kharakteristicheskie koltsa Li i nelineinye integriruemye uravneniya, In-t kompyuter. issled., M., Izhevsk, 2012

[27] E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, J. Math. Phys., 61:7 (2020), 073505, 15 pp., arXiv: 2005.06738 | DOI | MR

[28] A. B. Shabat, R. I. Yamilov, Eksponentsialnye sistemy tipa I i matritsy Kartana, Preprint, Bashkirskii filial AN SSSR, Ufa, 1981

[29] A. V. Zhiber, F. Kh. Mukminov, “Kvadratichnye sistemy, simmetrii, kharakteristicheskie i polnye algebry”, Zadachi matematicheskoi fiziki i asimptotiki ikh reshenii, BNTs UrO AN SSSR, Ufa, 1991, 14–32

[30] A. V. Zhiber, R. D. Murtazina, “O kharakteristicheskikh algebrakh Li uravnenii $u_{xy}=f(u,u_x)$”, Fundament. i prikl. matem., 12:7 (2006), 65–78 | DOI | MR | Zbl

[31] I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 1–39 | DOI

[32] I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form $t_{1,x}=t_x+d(t,t_1)$”, J. Math. Phys., 50:10 (2009), 102710, 23 pp. | DOI | MR

[33] G. S. Rinehart, “Differential forms for general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR

[34] D. Millionshchikov, “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 21:5 (2018), 1037–1069 | DOI | MR

[35] D. V. Millionschikov, S. V. Smirnov, “Kharakteristicheskie algebry i integriruemye sistemy eksponentsialnogo tipa”, Ufimsk. matem. zhurn., 13:2 (2021), 44–73 | DOI | MR

[36] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205, 23 pp. | DOI | MR

[37] G. Gubbiotti, R. I. Yamilov, “Darboux integrability of trapezoidal H4 and H4 families of lattice equations I: first integrals”, J. Phys. A: Math. Theor., 50:34 (2017), 345205, 26 pp. | DOI | MR

[38] P. Xenitidis, “Determining the symmetries of difference equations”, Proc. Roy. Soc. A, 474:2219 (2018), 20180340, 20 pp. | DOI | MR

[39] I. M. Anderson, N. Kamran, “The variational bicomplex for hyperbolic second-order scalar partial differential equations in the plane”, Duke Math. J., 87:2 (1997), 265–319 | DOI | MR

[40] V. E. Adler, S. Ya. Startsev, “O diskretnykh analogakh uravneniya Liuvillya”, TMF, 121:2 (1999), 271–284 | DOI | DOI | MR | Zbl

[41] A. V. Zhiber, O. S. Kostrigina, “Kharakteristicheskie algebry nelineinykh giperbolicheskikh sistem uravnenii”, Zhurn. SFU. Ser. Matem. i fiz., 3:2 (2010), 173–184

[42] I. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp., arXiv: nlin.SI/0506027 | DOI | MR

[43] S. V. Smirnov, “Integriruemost po Darbu diskretnykh dvumerizovannykh tsepochek Tody”, TMF, 182:2 (2015), 231–255 | DOI | DOI | MR