@article{TMF_2022_213_2_a4,
author = {M. A. Lyalinov},
title = {Schr\"odinger operator in a half-plane with {the~Neumann} condition on the~boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {287--319},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/}
}
TY - JOUR AU - M. A. Lyalinov TI - Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 287 EP - 319 VL - 213 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/ LA - ru ID - TMF_2022_213_2_a4 ER -
%0 Journal Article %A M. A. Lyalinov %T Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 287-319 %V 213 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/ %G ru %F TMF_2022_213_2_a4
M. A. Lyalinov. Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 287-319. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/
[1] B. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015, 43 pp. | DOI | MR
[2] B. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$-interactions supported on conical surfaces”, J. Phys. A: Math. Theor., 47:35 (2014), 355202, 16 pp. | DOI | MR
[3] M. Khalile, K. Pankrashkin, “Eigenvalues of Robin Laplacians in infinite sectors”, Math. Nachr., 291:5–6 (2018), 928–965 | MR
[4] M. Sh. Birman, M. Z. Salomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR | MR | Zbl
[5] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995 | MR
[6] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta'$-interaction on a circular conical surface”, Proc. Roy. Soc. A, 476:2241 (2020), 20200179, 23 pp. | DOI | MR
[7] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, Eur. J. Appl. Math., 33:3 (2022), 538–559 | DOI | MR
[8] M. A. Lyalinov, “Kommentarii o sobstvennykh funktsiyakh i sobstvennykh chislakh operatora Laplasa v ugle s kraevymi usloviyami Robena”, Zap. nauchn. sem. POMI, 483 (2019), 116–127 | DOI | MR
[9] A. A. Fedotov, “Metod monodromizatsii v teorii pochti-periodicheskikh uravnenii”, Algebra i analiz, 25:2 (2013), 203–235 | DOI | MR | Zbl
[10] A. A. Fedotov, F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Commun. Math. Phys., 334:2 (2015), 1083–1099, arXiv: 1311.6930 | DOI | MR
[11] A. Fedotov, F. Klopp, “A complex WKB method for adiabatic problems”, Asymptot. Anal., 27:3–4 (2001), 219–264 | MR
[12] G. D. Malyuzhinets, “Vozbuzhdenie, otrazhenie i izluchenie poverkhnostnykh voln na kline s zadannymi impedantsami granei”, Dokl. AN SSSR, 121:3 (1958), 436–439 | MR | Zbl
[13] W. E. Williams, “Diffraction of an $E$-polarised plane wave by an imperfectly conducting wedge”, Proc. Roy. Soc. London Ser. A, 252:1270 (1959), 376–393 | DOI | MR
[14] J.-M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist Saclay, Paris, 1997; J.-M. L. Bernard, Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Science Series on Wave Phenomena, Alpha Science, Oxford, 2014
[15] M. A. Lyalinov, N. Y. Zhu, “Acoutic scattering by a circular semi-transparent conical surface”, J. Eng. Math., 59:4 (2007), 385–398 | DOI | MR
[16] M. A. Lyalinov, N. Y. Zhu, V. P. Smyshlyaev, “Scattering of a plane electromagnetic wave by a hollow circular cone with thin semi-transparent walls”, IMA J. Appl. Math., 75:5 (2010), 676–719 | DOI | MR
[17] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Series on Wave Phenomena, Alpha Science, Oxford, 2007
[18] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012 | DOI
[19] M. Roseau, “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11:4 (1958), 433–493 | DOI | MR
[20] J. B. Lawrie, A. C. King, “Exact solution to a class of the functional difference equations with application to a moving contact line flow”, Eur. J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR
[21] R. Jost, “Mathematical analysis of a simple model for the stripping reaction”, Z. Angew. Math. Phys., 6 (1955), 316–326 | DOI | MR
[22] S. Albeverio, “Analytische Lösung eines idealisierten Stripping- oder Beugungsproblems”, Helv. Phys. Acta, 40 (1967), 135–184 | Zbl
[23] M. Gaudin, B. Derrida, “Solution exacte d'un problème modèle à trois corps. Etat lié”, J. Phys. France, 36:12 (1975), 1183–1197 | DOI
[24] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219:1 (2001), 199–219, arXiv: hep-th/0006156 | DOI | MR
[25] D. R. Yafaev, “Spectral and scattering theory for perturbations of the Carleman operator”, Algebra i analiz, 25:2 (2013), 251–278 | DOI | MR | Zbl
[26] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972
[27] G. G. Mehler, “Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR
[28] M. A. Lyalinov, “Functional-difference equations and their link with perturbations of the Mehler operator”, Russian J. Math. Phys., 29:3 (2022), 379–396 | DOI | MR
[29] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl
[30] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publ., New York, 1986 | MR
[31] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl