Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 287-319 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the asymptotics with respect to distance for the eigenfunction of the Schrödinger operator in a half-plane with a singular $\delta$-potential supported by two half-lines. Such an operator occurs in problems of scattering of three one-dimensional quantum particles with point-like pair interaction under some additional restrictions, as well as in problems of wave diffraction in wedge-shaped and cone-shaped domains. Using the Kontorovich–Lebedev representation, the problem of constructing an eigenfunction of an operator reduces to studying a system of homogeneous functional-difference equations with a characteristic (spectral) parameter. We study the properties of solutions of such a system of second-order homogeneous functional-difference equations with a potential from a special class. Depending on the values of the characteristic parameter in the equations, we describe their nontrivial solutions, the eigenfunctions of the equation. The study of these solutions is based on reducing the system to integral equations with a bounded self-adjoint operator, which is a completely continuous perturbation of the matrix Mehler operator. For a perturbed Mehler operator, sufficient conditions are proposed for the existence of a discrete spectrum to the right of the essential spectrum. Conditions for the finiteness of the discrete spectrum are studied. These results are used in the considered problem in the half-plane. The transformation from the Kontorovich–Lebedev representation to the Sommerfeld integral representation is used to construct the asymptotics with respect to the distance for the eigenfunction of the Schrödinger operator under consideration.
Keywords: functional-difference equations, spectrum, perturbed Mehler operator, asymptotics of eigenfunctions.
@article{TMF_2022_213_2_a4,
     author = {M. A. Lyalinov},
     title = {Schr\"odinger operator in a half-plane with {the~Neumann} condition on the~boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {287--319},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 287
EP  - 319
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/
LA  - ru
ID  - TMF_2022_213_2_a4
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 287-319
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/
%G ru
%F TMF_2022_213_2_a4
M. A. Lyalinov. Schrödinger operator in a half-plane with the Neumann condition on the boundary and a singular $\delta$-potential supported by two half-lines, and systems of functional-difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 287-319. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a4/

[1] B. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$- and $\delta'$-interactions on Lipschitz surfaces and chromatic numbers of associated partitions”, Rev. Math. Phys., 26:8 (2014), 1450015, 43 pp. | DOI | MR

[2] B. Behrndt, P. Exner, V. Lotoreichik, “Schrödinger operators with $\delta$-interactions supported on conical surfaces”, J. Phys. A: Math. Theor., 47:35 (2014), 355202, 16 pp. | DOI | MR

[3] M. Khalile, K. Pankrashkin, “Eigenvalues of Robin Laplacians in infinite sectors”, Math. Nachr., 291:5–6 (2018), 928–965 | MR

[4] M. Sh. Birman, M. Z. Salomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Izd-vo Leningr. un-ta, L., 1980 | MR | MR | Zbl

[5] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1995 | MR

[6] M. A. Lyalinov, “Functional difference equations and eigenfunctions of a Schrödinger operator with $\delta'$-interaction on a circular conical surface”, Proc. Roy. Soc. A, 476:2241 (2020), 20200179, 23 pp. | DOI | MR

[7] M. A. Lyalinov, “Eigenoscillations in an angular domain and spectral properties of functional equations”, Eur. J. Appl. Math., 33:3 (2022), 538–559 | DOI | MR

[8] M. A. Lyalinov, “Kommentarii o sobstvennykh funktsiyakh i sobstvennykh chislakh operatora Laplasa v ugle s kraevymi usloviyami Robena”, Zap. nauchn. sem. POMI, 483 (2019), 116–127 | DOI | MR

[9] A. A. Fedotov, “Metod monodromizatsii v teorii pochti-periodicheskikh uravnenii”, Algebra i analiz, 25:2 (2013), 203–235 | DOI | MR | Zbl

[10] A. A. Fedotov, F. Sandomirskiy, “An exact renormalization formula for the Maryland model”, Commun. Math. Phys., 334:2 (2015), 1083–1099, arXiv: 1311.6930 | DOI | MR

[11] A. Fedotov, F. Klopp, “A complex WKB method for adiabatic problems”, Asymptot. Anal., 27:3–4 (2001), 219–264 | MR

[12] G. D. Malyuzhinets, “Vozbuzhdenie, otrazhenie i izluchenie poverkhnostnykh voln na kline s zadannymi impedantsami granei”, Dokl. AN SSSR, 121:3 (1958), 436–439 | MR | Zbl

[13] W. E. Williams, “Diffraction of an $E$-polarised plane wave by an imperfectly conducting wedge”, Proc. Roy. Soc. London Ser. A, 252:1270 (1959), 376–393 | DOI | MR

[14] J.-M. L. Bernard, Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, Editions Dist Saclay, Paris, 1997; J.-M. L. Bernard, Advanced Theory of Diffraction by a Semi-infinite Impedance Cone, Alpha Science Series on Wave Phenomena, Alpha Science, Oxford, 2014

[15] M. A. Lyalinov, N. Y. Zhu, “Acoutic scattering by a circular semi-transparent conical surface”, J. Eng. Math., 59:4 (2007), 385–398 | DOI | MR

[16] M. A. Lyalinov, N. Y. Zhu, V. P. Smyshlyaev, “Scattering of a plane electromagnetic wave by a hollow circular cone with thin semi-transparent walls”, IMA J. Appl. Math., 75:5 (2010), 676–719 | DOI | MR

[17] V. M. Babich, M. A. Lyalinov, V. E. Grikurov, Diffraction Theory. The Sommerfeld-Malyuzhinets Technique, Alpha Science Series on Wave Phenomena, Alpha Science, Oxford, 2007

[18] M. A. Lyalinov, N. Y. Zhu, Scattering of Waves by Wedges and Cones with Impedance Boundary Conditions, Mario Boella Series on Electromagnetism in Information Communication, SciTech-IET, Edison, NJ, 2012 | DOI

[19] M. Roseau, “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11:4 (1958), 433–493 | DOI | MR

[20] J. B. Lawrie, A. C. King, “Exact solution to a class of the functional difference equations with application to a moving contact line flow”, Eur. J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR

[21] R. Jost, “Mathematical analysis of a simple model for the stripping reaction”, Z. Angew. Math. Phys., 6 (1955), 316–326 | DOI | MR

[22] S. Albeverio, “Analytische Lösung eines idealisierten Stripping- oder Beugungsproblems”, Helv. Phys. Acta, 40 (1967), 135–184 | Zbl

[23] M. Gaudin, B. Derrida, “Solution exacte d'un problème modèle à trois corps. Etat lié”, J. Phys. France, 36:12 (1975), 1183–1197 | DOI

[24] L. D. Faddeev, R. M. Kashaev, A. Yu. Volkov, “Strongly coupled quantum discrete Liouville theory. I: Algebraic approach and duality”, Commun. Math. Phys., 219:1 (2001), 199–219, arXiv: hep-th/0006156 | DOI | MR

[25] D. R. Yafaev, “Spectral and scattering theory for perturbations of the Carleman operator”, Algebra i analiz, 25:2 (2013), 251–278 | DOI | MR | Zbl

[26] I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972

[27] G. G. Mehler, “Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Elektricitätsvertheilung”, Math. Ann., 18:2 (1881), 161–194 | DOI | MR

[28] M. A. Lyalinov, “Functional-difference equations and their link with perturbations of the Mehler operator”, Russian J. Math. Phys., 29:3 (2022), 379–396 | DOI | MR

[29] M. V. Fedoryuk, Asimptotika: integraly i ryady, Nauka, M., 1987 | MR | Zbl

[30] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Chelsea Publ., New York, 1986 | MR

[31] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl