On the~$R$-matrix identities related to elliptic anisotropic
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 268-286
Voir la notice de l'article provenant de la source Math-Net.Ru
We propose and prove a set of identities for the elliptic $GL_M$ $R$-matrix (in the fundamental representation). In the scalar case ($M=1$), these are elliptic function identities derived by Ruijsenaars as necessary and sufficient conditions for his kernel identity underlying the construction of integral solutions of quantum spinless Ruijsenaars–Schneider model. In this respect, our result can be regarded as a first step toward constructing solutions of the quantum eigenvalue problem for the anisotropic spin Ruijsenaars model.
Keywords:
quantum integrable spin many-body system, spin Ruijsenaars–Schneider model, $R$-matrix identities, kernel identity.
@article{TMF_2022_213_2_a3,
author = {M. G. Matushko and A. V. Zotov},
title = {On the~$R$-matrix identities related to elliptic anisotropic},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--286},
publisher = {mathdoc},
volume = {213},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/}
}
TY - JOUR AU - M. G. Matushko AU - A. V. Zotov TI - On the~$R$-matrix identities related to elliptic anisotropic JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 268 EP - 286 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/ LA - ru ID - TMF_2022_213_2_a3 ER -
M. G. Matushko; A. V. Zotov. On the~$R$-matrix identities related to elliptic anisotropic. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 268-286. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/