@article{TMF_2022_213_2_a3,
author = {M. G. Matushko and A. V. Zotov},
title = {On the~$R$-matrix identities related to elliptic anisotropic},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {268--286},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/}
}
M. G. Matushko; A. V. Zotov. On the $R$-matrix identities related to elliptic anisotropic. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 268-286. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/
[1] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR
[2] S. Rudzhinars, “Sobstvennye funktsii dlya raznostei gamiltonianov”, TMF, 146:1 (2006), 31–41 | DOI | DOI | MR | Zbl
[3] M. Hallnäs, S. Ruijsenaars, “Kernel functions and Bäcklund transformations for relativistic Calogero–Moser and Toda systems”, J. Math. Phys., 53:12 (2012), 123512, 64 pp., arXiv: 1206.3786 | DOI | MR
[4] Y. Komori, M. Noumi, J. Shiraishi, “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | MR
[5] S. Kharchev, S. Khoroshkin, Wave function for $GL(n,\mathbb R)$ hyperbolic Sutherland model II. Dual Hamiltonians, arXiv: 2108.05393
[6] F. Atai, M. Hallnäs, E. Langmann, “Source identities and kernel functions for deformed (quantum) Ruijsenaars models”, Lett. Math. Phys., 104:7 (2014), 811–835, arXiv: ; M. Hallnäs, E. Langmann, M. Noumi, H. Rosengren, “From Kajihara's transformation formula to deformed Macdonald–Ruijsenaars and Noumi–Sano operators”, Selecta Math. (N. S.), 28:2 (2022), 24, 36 pp., arXiv: 1311.44332105.01936 | DOI | MR | DOI | MR
[7] A. Zabrodin, A. Zotov, “Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nucl. Phys. B, 927 (2018), 550–565, arXiv: 1711.01036 | DOI | MR
[8] R. J. Baxter, “Partition function of the Eight-Vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR
[9] A. A. Belavin, “Dynamical symmetry of integrable quantum systems”, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR
[10] M. Matushko, A. Zotov, Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and $R$-matrix identities, arXiv: 2201.05944
[11] M. Matushko, A. Zotov, Elliptic generalization of integrable $q$-deformed Haldane–Shastry long-range spin chain, arXiv: ; I. Sechin, A. Zotov, “$R$-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7, arXiv: 2202.011771801.08908 | DOI | MR
[12] J. Lamers, “Resurrecting the partially isotropic Haldane–Shastry model”, Phys. Rev. B, 97:21 (2018), 214416, 6 pp., arXiv: ; J. Lamers, V. Pasquier, D. Serban, Spin-Ruijsenaars, $q$-deformed Haldane–Shastry and Macdonald polynomials, arXiv: 1801.057282004.13210 | DOI
[13] A. V. Zotov, “Relyativistskie vzaimodeistvuyuschie integriruemye ellipticheskie volchki”, TMF, 201:2 (2019), 175–192, arXiv: ; И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67, arXiv: ; E. Trunina, A. Zotov, “Lax equations for relativistic $GL(NM,\mathbb C)$ Gaudin models on elliptic curve”, J. Phys. A: Math. Theor., 55:39, 395202, 31 pp., arXiv: 1910.082462011.095992204.06137 | DOI | DOI | MR | DOI | DOI | MR | DOI
[14] A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 10 (2019), 081, 33 pp., arXiv: ; Е. С. Трунина, А. В. Зотов, “Многополюсное обобщение для эллиптических моделей интегрируемых взаимодействующих волчков”, ТМФ, 209:1 (2021), 16–45, arXiv: 1905.078202104.08982 | DOI | MR | DOI | DOI | MR
[15] T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: 1812.04209 | DOI | MR
[16] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 39 pp., arXiv: 1405.7523 | DOI
[17] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progress in Mathematics, 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser, Boston, MA, 1999, 147–182 ; A. Polishchuk, “Classical Yang–Baxter equation and the $A^\infty$-constraint”, Adv. Math., 168:1 (2002), 56–95, arXiv: math.AG/0008156 | DOI | MR | Zbl | DOI | MR
[18] A. V. Zotov, “Model Kalodzhero–Mozera i $R$-matrichnye tozhdestva”, TMF, 197:3 (2018), 417–434 | DOI | DOI | MR
[19] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, “Kvantovye $R$-matritsy Bakstera–Belavina i mnogomernye pary Laksa dlya uravneniya Penleve VI”, TMF, 184:1 (2015), 41–56, arXiv: 1501.07351 | DOI | DOI | MR