On the $R$-matrix identities related to elliptic anisotropic
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 268-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose and prove a set of identities for the elliptic $GL_M$ $R$-matrix (in the fundamental representation). In the scalar case ($M=1$), these are elliptic function identities derived by Ruijsenaars as necessary and sufficient conditions for his kernel identity underlying the construction of integral solutions of quantum spinless Ruijsenaars–Schneider model. In this respect, our result can be regarded as a first step toward constructing solutions of the quantum eigenvalue problem for the anisotropic spin Ruijsenaars model.
Keywords: quantum integrable spin many-body system, spin Ruijsenaars–Schneider model, $R$-matrix identities, kernel identity.
@article{TMF_2022_213_2_a3,
     author = {M. G. Matushko and A. V. Zotov},
     title = {On the~$R$-matrix identities related to elliptic anisotropic},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {268--286},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/}
}
TY  - JOUR
AU  - M. G. Matushko
AU  - A. V. Zotov
TI  - On the $R$-matrix identities related to elliptic anisotropic
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 268
EP  - 286
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/
LA  - ru
ID  - TMF_2022_213_2_a3
ER  - 
%0 Journal Article
%A M. G. Matushko
%A A. V. Zotov
%T On the $R$-matrix identities related to elliptic anisotropic
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 268-286
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/
%G ru
%F TMF_2022_213_2_a3
M. G. Matushko; A. V. Zotov. On the $R$-matrix identities related to elliptic anisotropic. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 268-286. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a3/

[1] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR

[2] S. Rudzhinars, “Sobstvennye funktsii dlya raznostei gamiltonianov”, TMF, 146:1 (2006), 31–41 | DOI | DOI | MR | Zbl

[3] M. Hallnäs, S. Ruijsenaars, “Kernel functions and Bäcklund transformations for relativistic Calogero–Moser and Toda systems”, J. Math. Phys., 53:12 (2012), 123512, 64 pp., arXiv: 1206.3786 | DOI | MR

[4] Y. Komori, M. Noumi, J. Shiraishi, “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | MR

[5] S. Kharchev, S. Khoroshkin, Wave function for $GL(n,\mathbb R)$ hyperbolic Sutherland model II. Dual Hamiltonians, arXiv: 2108.05393

[6] F. Atai, M. Hallnäs, E. Langmann, “Source identities and kernel functions for deformed (quantum) Ruijsenaars models”, Lett. Math. Phys., 104:7 (2014), 811–835, arXiv: ; M. Hallnäs, E. Langmann, M. Noumi, H. Rosengren, “From Kajihara's transformation formula to deformed Macdonald–Ruijsenaars and Noumi–Sano operators”, Selecta Math. (N. S.), 28:2 (2022), 24, 36 pp., arXiv: 1311.44332105.01936 | DOI | MR | DOI | MR

[7] A. Zabrodin, A. Zotov, “Self-dual form of Ruijsenaars–Schneider models and ILW equation with discrete Laplacian”, Nucl. Phys. B, 927 (2018), 550–565, arXiv: 1711.01036 | DOI | MR

[8] R. J. Baxter, “Partition function of the Eight-Vertex lattice model”, Ann. Phys., 70:1 (1972), 193–228 | DOI | MR

[9] A. A. Belavin, “Dynamical symmetry of integrable quantum systems”, Nucl. Phys. B, 180:2 (1981), 189–200 | DOI | MR

[10] M. Matushko, A. Zotov, Anisotropic spin generalization of elliptic Macdonald–Ruijsenaars operators and $R$-matrix identities, arXiv: 2201.05944

[11] M. Matushko, A. Zotov, Elliptic generalization of integrable $q$-deformed Haldane–Shastry long-range spin chain, arXiv: ; I. Sechin, A. Zotov, “$R$-matrix-valued Lax pairs and long-range spin chains”, Phys. Lett. B, 781 (2018), 1–7, arXiv: 2202.011771801.08908 | DOI | MR

[12] J. Lamers, “Resurrecting the partially isotropic Haldane–Shastry model”, Phys. Rev. B, 97:21 (2018), 214416, 6 pp., arXiv: ; J. Lamers, V. Pasquier, D. Serban, Spin-Ruijsenaars, $q$-deformed Haldane–Shastry and Macdonald polynomials, arXiv: 1801.057282004.13210 | DOI

[13] A. V. Zotov, “Relyativistskie vzaimodeistvuyuschie integriruemye ellipticheskie volchki”, TMF, 201:2 (2019), 175–192, arXiv: ; И. А. Сечин, А. В. Зотов, “Интегрируемая система обобщенных релятивистских взаимодействующих волчков”, ТМФ, 205:1 (2020), 55–67, arXiv: ; E. Trunina, A. Zotov, “Lax equations for relativistic $GL(NM,\mathbb C)$ Gaudin models on elliptic curve”, J. Phys. A: Math. Theor., 55:39, 395202, 31 pp., arXiv: 1910.082462011.095992204.06137 | DOI | DOI | MR | DOI | DOI | MR | DOI

[14] A. Grekov, I. Sechin, A. Zotov, “Generalized model of interacting integrable tops”, JHEP, 10 (2019), 081, 33 pp., arXiv: ; Е. С. Трунина, А. В. Зотов, “Многополюсное обобщение для эллиптических моделей интегрируемых взаимодействующих волчков”, ТМФ, 209:1 (2021), 16–45, arXiv: 1905.078202104.08982 | DOI | MR | DOI | DOI | MR

[15] T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: 1812.04209 | DOI | MR

[16] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 39 pp., arXiv: 1405.7523 | DOI

[17] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progress in Mathematics, 172, eds. J.-L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser, Boston, MA, 1999, 147–182 ; A. Polishchuk, “Classical Yang–Baxter equation and the $A^\infty$-constraint”, Adv. Math., 168:1 (2002), 56–95, arXiv: math.AG/0008156 | DOI | MR | Zbl | DOI | MR

[18] A. V. Zotov, “Model Kalodzhero–Mozera i $R$-matrichnye tozhdestva”, TMF, 197:3 (2018), 417–434 | DOI | DOI | MR

[19] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, “Kvantovye $R$-matritsy Bakstera–Belavina i mnogomernye pary Laksa dlya uravneniya Penleve VI”, TMF, 184:1 (2015), 41–56, arXiv: 1501.07351 | DOI | DOI | MR