Cauchy matrix solutions of some local and nonlocal complex equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 234-267
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a Cauchy matrix reduction technique that enables us to obtain solutions for the reduced local and nonlocal complex equations from the Cauchy matrix solutions of the original nonreduced systems. Specifically, by imposing local and nonlocal complex reductions on some Ablowitz–Kaup–Newell–Segur-type equations, we study some local and nonlocal complex equations involving the local and nonlocal complex modified Korteweg–de Vries equation, the local and nonlocal complex sine-Gordon equation, the local and nonlocal potential nonlinear Schrödinger equation, and the local and nonlocal potential complex modified Korteweg–de Vries equation. Cauchy matrix-type soliton solutions and Jordan block solutions for the aforesaid local and nonlocal complex equations are presented. The dynamical behavior of some of the obtained solutions is analyzed with graphical illustrations.
Keywords:
local and nonlocal complex reductions, dynamics.
Mots-clés : AKNS-type equations, Cauchy matrix solutions
Mots-clés : AKNS-type equations, Cauchy matrix solutions
@article{TMF_2022_213_2_a2,
author = {Haijing Xu and Songlin Zhao},
title = {Cauchy matrix solutions of some local and nonlocal complex equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--267},
publisher = {mathdoc},
volume = {213},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/}
}
TY - JOUR AU - Haijing Xu AU - Songlin Zhao TI - Cauchy matrix solutions of some local and nonlocal complex equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 234 EP - 267 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/ LA - ru ID - TMF_2022_213_2_a2 ER -
Haijing Xu; Songlin Zhao. Cauchy matrix solutions of some local and nonlocal complex equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 234-267. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/