Cauchy matrix solutions of some local and nonlocal complex equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 234-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a Cauchy matrix reduction technique that enables us to obtain solutions for the reduced local and nonlocal complex equations from the Cauchy matrix solutions of the original nonreduced systems. Specifically, by imposing local and nonlocal complex reductions on some Ablowitz–Kaup–Newell–Segur-type equations, we study some local and nonlocal complex equations involving the local and nonlocal complex modified Korteweg–de Vries equation, the local and nonlocal complex sine-Gordon equation, the local and nonlocal potential nonlinear Schrödinger equation, and the local and nonlocal potential complex modified Korteweg–de Vries equation. Cauchy matrix-type soliton solutions and Jordan block solutions for the aforesaid local and nonlocal complex equations are presented. The dynamical behavior of some of the obtained solutions is analyzed with graphical illustrations.
Keywords: local and nonlocal complex reductions, dynamics.
Mots-clés : AKNS-type equations, Cauchy matrix solutions
@article{TMF_2022_213_2_a2,
     author = {Haijing Xu and Songlin Zhao},
     title = {Cauchy matrix solutions of some local and nonlocal complex equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--267},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/}
}
TY  - JOUR
AU  - Haijing Xu
AU  - Songlin Zhao
TI  - Cauchy matrix solutions of some local and nonlocal complex equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 234
EP  - 267
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/
LA  - ru
ID  - TMF_2022_213_2_a2
ER  - 
%0 Journal Article
%A Haijing Xu
%A Songlin Zhao
%T Cauchy matrix solutions of some local and nonlocal complex equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 234-267
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/
%G ru
%F TMF_2022_213_2_a2
Haijing Xu; Songlin Zhao. Cauchy matrix solutions of some local and nonlocal complex equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 234-267. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a2/

[1] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnost glubokoi zhidkosti”, PMTF, 1968, 86–94 | DOI

[2] H. Hasimoto, “A soliton on a vortex filament”, J. Fluid Mech., 51:3 (1972), 477–485 | DOI | MR

[3] V. E. Zakharov, “Kollaps lengmyurovskikh voln”, ZhETF, 62:5 (1972), 1745–1759

[4] C. F. F. Karney, A. Sen, F. Y. F. Chu, “Nonlinear evolution of lower hybrid waves”, Phys. Fluids, 22:5 (1979), 940–952 | DOI

[5] O. B. Gorbacheva, L. A. Ostrovsky, “Nonlinear vector waves in a mechanical model of a molecular chain”, Phys. D, 8:1–2 (1983), 223–228 | DOI | MR

[6] S. C. Anco, M. Mohiuddin, T. Wolf, “Traveling waves and conservation laws for complex mKdV-type equations”, Appl. Math. Comput., 219:2 (2012), 679–698 | DOI | MR

[7] H. J. de Vega, J. Ramírez Mittelbrunn, M. Ramón Medrano, N. G. Sánchez, “The general solution of the 2D sigma model stringy black hole and the massless complex sine-Gordon model”, Phys. Lett. B, 323:2 (1994), 133–138, arXiv: hep-th/9312085 | DOI | MR

[8] Q-Han Park, H. J. Shin, “Field theory for coherent optical pulse propagation”, Phys. Rev. A, 57:6 (1998), 4621–4642 | DOI

[9] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:8 (2013), 064105, 5 pp. | DOI

[10] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[11] S. Y. Lou, “Alice–Bob systems, $\hat{P}$–$\hat{T}$–$\hat{C}$ symmetry invariant and symmetry breaking soliton solutions”, J. Math. Phys., 59:8 (2018), 083507, 20 pp. | DOI | MR

[12] D. Sinha, P. K. Ghosh, “Symmetries and exact solutions of a class of nonlocal nonlinear Schrödinger equations with self-induced parity-time-symmetric potential”, Phys. Rev. E, 91:4 (2015), 042908, 14 pp. | DOI

[13] T. I. Valchev, “On Mikhailov's reduction group”, Phys. Lett. A, 379:34–35 (2015), 1877–1880 | DOI | MR

[14] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp. | DOI | MR

[15] Z. Yan, “Integrable $\mathscr{P\!T}$-symmetric local and nonlocal vector nonlinear Schrödinger equations: A unified two-parameter model”, Appl. Math. Lett., 47 (2015), 61–68 | DOI | MR

[16] K. Chen, D.-J. Zhang, “Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction”, Appl. Math. Lett., 75 (2018), 82–88 | DOI | MR

[17] M. Li, T. Xu, “Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential”, Phys. Rev. E, 91:3 (2015), 033202, 8 pp. | DOI | MR

[18] X.-D. Luo, “Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg–de Vries equation with nonzero boundary conditions and constant phase shift”, Chaos, 29:7 (2019), 073118, 13 pp. | DOI | MR

[19] L.-Y. Ma, S.-F. Shen, Z.-N. Zhu, “Soliton solution and gauge equivalence for an integrable nonlocal complex modified Korteweg–de Vries equation”, J. Math. Phys., 58:10 (2017), 103501, 12 pp. | DOI | MR

[20] B. Yang, J. Yang, “Transformations between nonlocal and local integrable equations”, Stud. Appl. Math., 40:2 (2017), 178–201 | DOI | MR

[21] M. Gürses, A. Pekcan, “Nonlocal modified KdV equations and their soliton solutions by Hirota method”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 427–448 | DOI | MR

[22] K. Chen, X. Deng, S. Lou, D.-J. Zhang, “Solutions of nonlocal equations reduced from the AKNS hierarchy”, Stud. Appl. Math., 141:1 (2018), 113–141 | DOI | MR

[23] X. Deng, S.-Y. Lou, D.-J. Zhang, “Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations”, Appl. Math. Comput., 332 (2018), 477–483 | DOI

[24] W. Feng, S.-L. Zhao, Y.-Y. Sun, “Double Casoratian solutions to the nonlocal semi-discrete modified Korteweg–de Vries equation”, Internat. J. Modern Phys. B, 34:5 (2020), 2050021, 14 pp. | DOI | MR

[25] S.-M. Liu, H. Wu, D.-J. Zhang, “New dynamics of the classical and nonlocal Gross–Pitaevskii equation with a parabolic potential”, Rep. Math. Phys., 86:3 (2020), 271–292, arXiv: 2003.01865 | DOI | MR

[26] W. Feng, S.-L. Zhao, “Soliton solutions to the nonlocal non-isospectral nonlinear Schrödinger equation”, Internat. J. Modern Phys. B, 34:25 (2020), 2050219, 14 pp. | DOI | MR

[27] H. J. Xu, S. L. Zhao, “Local and nonlocal reductions of two nonisospectral Ablowitz–Kaup–Newell–Segur equations and solutions”, Symmetry, 13:1 (2021), 23, 23 pp. | DOI

[28] K. Chen, S.-M. Liu, D.-J. Zhang, “Covariant hodograph transformations between nonlocal short pulse models and the AKNS$(-1)$ system”, Appl. Math. Lett., 88 (2019), 230–236 | DOI | MR

[29] F. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR

[30] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, 54, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[31] A. S. Fokas, M. J. Ablowitz, “Linearization of the Korteweg–de Vries and Painlevé II equations”, Phys. Rev. Lett., 47:16 (1981), 1096–1100 | DOI | MR

[32] F. W. Nijhoff, G. R. W. Quispel, J. van der Linden, H. W. Capel, “On some linear integral equations generating solutions of nonlinear partial differential equations”, Phys. A, 119:1–2 (1983), 101–142 | DOI | MR

[33] F. W. Nijhoff, H. W. Capel, G. L. Wiersma, “Integrable lattice systems in two and three dimensions”, Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, The Netherlands, August 26–31, 1984), Lecture Notes in Physics, 239, ed. R. Martini, Springer, Berlin–New York, 1985, 263–302 | DOI | MR | Zbl

[34] D.-J. Zhang, S.-L. Zhao, F. W. Nijhoff, “Direct linearization of extended lattice BSQ systems”, Stud. Appl. Math., 129:2 (2012), 220–248 | DOI | MR | Zbl

[35] W. Fu, F. W. Nijhoff, “Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations”, Proc. R. Soc. London Ser. A, 473:2203 (2017), 20160195, 22 pp. | DOI | MR

[36] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR

[37] J. Sylvester, “Sur l'équation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71, 115–116 | Zbl

[38] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR

[39] S.-L. Zhao, “The Sylvester equation and integrable equations: The Ablowitz–Kaup–Newell–Segur system”, Rep. Math. Phys., 82:2 (2018), 241–263 | DOI | MR

[40] W. Feng, S.-L. Zhao, “Cauchy matrix type solutions for the nonlocal nonlinear Schrödinger equation”, Rep. Math. Phys., 84:1 (2019), 75–83 | DOI | MR

[41] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl

[42] D.-J. Zhang, J. Ji, S.-L. Zhao, “Soliton scattering with amplitude changes of a negative order AKNS equation”, Phys. D, 238:23–24 (2009), 2361–2367 | DOI | MR

[43] F. W. Nijhoff, “On some “Schwarzian equations” and their discrete analogues”, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Progress in Nonlinear Differential Equations and Their Applications, 26, eds. A. S. Fokas, I. M. Gel'fand, Birkhäuser, Boston, MA, 1996, 237–260 | MR

[44] G. R. W. Quispel, H. W. Capel, “The nonlinear Schrödinger equation and the anisotropic Heisenberg spin chain”, Phys. Lett. A, 88:7 (1982), 371–374 | DOI | MR

[45] S. Carillo, M. Lo Schiavo, E. Porten, C. Schiebold, “A novel noncommutative KdV-type equation, its recursion operator, and solitons”, J. Math. Phys., 59:4 (2018), 043501, 14 pp., arXiv: 1704.03208 | DOI | MR