Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 214-233
Voir la notice de l'article provenant de la source Math-Net.Ru
Based on the study of quantum calculus, we construct a multicomponent $q$-KP hierarchy and its additional symmetries. The additional symmetries form a multifold $W_{1+\infty}$ algebra and the generating operator of the additional symmetries can be shown to have a concise form in terms of wave functions. Furthermore, the string equation and the action of additional symmetries of the multicomponent $q$-KP hierarchy on the Grassmannian are considered. After quantization, we derive the corresponding quantum torus symmetry, whose flows constitute an interesting multifold quantum torus type Lie algebra.
Keywords:
multicomponent $q$-KP hierarchy, additional symmetry, Grassmannian, quantum torus Lie algebra.
@article{TMF_2022_213_2_a1,
author = {Chuanzhong Li and Qian Chao},
title = {Symmetries of the~multicomponent $q${-KP} hierarchy on {a~Grassmannian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {214--233},
publisher = {mathdoc},
volume = {213},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/}
}
TY - JOUR AU - Chuanzhong Li AU - Qian Chao TI - Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 214 EP - 233 VL - 213 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/ LA - ru ID - TMF_2022_213_2_a1 ER -
Chuanzhong Li; Qian Chao. Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 214-233. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/