Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 214-233

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the study of quantum calculus, we construct a multicomponent $q$-KP hierarchy and its additional symmetries. The additional symmetries form a multifold $W_{1+\infty}$ algebra and the generating operator of the additional symmetries can be shown to have a concise form in terms of wave functions. Furthermore, the string equation and the action of additional symmetries of the multicomponent $q$-KP hierarchy on the Grassmannian are considered. After quantization, we derive the corresponding quantum torus symmetry, whose flows constitute an interesting multifold quantum torus type Lie algebra.
Keywords: multicomponent $q$-KP hierarchy, additional symmetry, Grassmannian, quantum torus Lie algebra.
@article{TMF_2022_213_2_a1,
     author = {Chuanzhong Li and Qian Chao},
     title = {Symmetries of the~multicomponent $q${-KP} hierarchy on {a~Grassmannian}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {214--233},
     publisher = {mathdoc},
     volume = {213},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/}
}
TY  - JOUR
AU  - Chuanzhong Li
AU  - Qian Chao
TI  - Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 214
EP  - 233
VL  - 213
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/
LA  - ru
ID  - TMF_2022_213_2_a1
ER  - 
%0 Journal Article
%A Chuanzhong Li
%A Qian Chao
%T Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 214-233
%V 213
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/
%G ru
%F TMF_2022_213_2_a1
Chuanzhong Li; Qian Chao. Symmetries of the~multicomponent $q$-KP hierarchy on a~Grassmannian. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 214-233. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/