@article{TMF_2022_213_2_a1,
author = {Chuanzhong Li and Qian Chao},
title = {Symmetries of the~multicomponent $q${-KP} hierarchy on {a~Grassmannian}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {214--233},
year = {2022},
volume = {213},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/}
}
Chuanzhong Li; Qian Chao. Symmetries of the multicomponent $q$-KP hierarchy on a Grassmannian. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 214-233. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a1/
[1] A. Klimyk, K. Schmüdgen, Quantum groups and their representations, Text and Monographs in Physics, Springer, Berlin, 1997 | DOI | MR
[2] V. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002 | DOI | MR
[3] G. E. Andrews, $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Lecture Series, 66, Amer. Math. Soc., Providence, RI, 1986 | DOI | MR
[4] H. Exton, $q$-Hypergeometric Functions and Applications, Ellis Horwood, Chichester, 1983 | MR
[5] K.-L. Tian, J.-S. He, Y.-C. Su, Y. Cheng, “String equations of the $q$-KP hierarchy”, Chinese Ann. Math. Ser. B, 32:6 (2011), 895–904 | DOI | MR
[6] K.-L. Tian, Y.-Y. Ge, X.-M. Zhu, “The $q$-deformed mKP hierarchy with two parameters”, Modern Phys. Lett. B, 32:16 (2018), 1850170, 11 pp. | DOI | MR
[7] P. Iliev, “Tau function solution to $q$-deformation of the KP hierarchy”, Lett. Math. Phys., 44:3 (1998), 187–200 | DOI | MR
[8] P. Iliev, “$q$-KP hierarchy, bispectrality and Calogero–Moser systems”, J. Geom. Phys., 35:2–3 (2000), 157–182 | DOI | MR
[9] E. Frenkel, N. Reshetikhin, “Quantum affine algebras and deformations of the Virasoro and $\mathscr{W}$-algebras”, Commun. Math. Phys., 178:1 (1996), 237–264, arXiv: q-alg/9505025 | DOI | MR
[10] E. Frenkel, “Deformations of the KdV hierarchy and related soliton equations”, Internat. Math. Res. Notices, 1996:2 (1996), 55–76 | DOI | MR
[11] J. Mas, M. Seco, “The algebra of $q$-pseudodifferential symbols and the $q$-$W_{\rm KP}^{(n)}$ algebra”, J. Math. Phys., 37:12 (1996), 6510–6529, arXiv: q-alg/9512025 | DOI | MR
[12] A. Yu. Orlov, E. I. Schulman, “Additional symmetries of integrable equations and conformal algebra representation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR
[13] R. Dijkgraaf, E. Witten, “Mean field theory, topological field theory, and multimatrix models”, Nucl. Phys. B, 342:3 (1990), 486–522 | DOI | MR
[14] R. Block, “On torsion-free abelian groups and Lie algebras”, Proc. Amer. Math. Soc., 9 (1958), 613–620 | DOI | MR | Zbl
[15] C. Z. Li, J. S. He, “Block algebra in two-component BKP and D type Drinfeld–Sokolov hierarchies”, J. Math. Phys., 54:11 (2013), 113501, 14 pp. | DOI | MR | Zbl
[16] C.-Z. Li, J.-S. He, Y.-C. Su, “Block (or Hamiltonian) Lie symmetry of dispersionless D type Drinfeld–Sokolov hierarchy”, Commun. Theor. Phys., 61:4 (2014), 431–435, arXiv: 1401.4225 | DOI | MR
[17] C.-Z. Li, X.-Y. Li, F.-S. Li, “Quantum torus Lie algebra in the $q$-deformed Kadomtsev–Petviashvili system”, Algebra Colloq., 26:4 (2019), 579–588 | DOI | MR
[18] T. Nakatsu, K. Takasaki, “Melting crystal, quantum torus and Toda hierarchy”, Commun. Math. Phys., 285:2 (2009), 445–468, arXiv: 0710.5339 | DOI | MR
[19] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Operator approach to the Kadomtsev–Petviashvili equation: Transformation groups for soliton equations III”, J. Phys. Soc. Japan, 50:11 (2007), 3806–3812 | DOI | MR
[20] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl
[21] A. Yu. Orlov, “Vertex operators, $\bar\partial$-problem, symmetries, Hamiltonian and Lagrangian formalism of $(2+1)$ dimensional integrable systems”, Plazma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), v. 1, eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134
[22] P. G. Grinevich, A. Yu. Orlov, “Virasoro action on Riemann surfaces, Grassmannians, $\det\bar{\partial}_J$ and Segal–Wilson $\tau$-function”, Problems of Modern Quantum Field Theory (Alushta USSR, April 24 – May 5, 1989), Research Reports in Physics, eds. A. A. Belavin, A. U. Klimyk, A. B. Zamolodchikov, Springer, Berlin, 1989, 86–106 | DOI | MR
[23] L. A. Dickey, “Additional symmetries of KP, Grassmannian, and the string equation II”, Modern Phys. Lett. A, 8:14 (1993), 1357–1377, arXiv: hep-th/9210155 | DOI | MR
[24] C. Álvarez-Fernández, U. Fidalgo Prieto, M. Mañas, “Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy”, Adv. Math., 227:4 (2011), 1451–1525 | DOI | MR
[25] Chuan-Chzhun Li, Tszin-Sun Khe, “O rasshirennoi ierarkhii $Z_N$-Tody”, TMF, 185:2 (2015), 289–312 | DOI | DOI | MR
[26] C.-Z. Li, “$N=2$ Supersymmetric BKP hierarchy with $SW_{1+\infty}$ symmetries and its multicomponent generalization”, Phys. Lett. B, 820 (2021), 136563, 9 pp. | DOI | MR
[27] C.-Z. Li, Q.-L. Shi, “Symmetries of the multi-component supersymmetric (ABC)-type KP hierarchies”, J. Math. Phys., 62:9 (2021), 093509, 14 pp. | DOI | MR
[28] C.-Z. Li, “$SW_{1+\infty}$ symmetries of $N=2$ supersymmetric CKP hierarchy and its multicomponent generalization”, Nucl. Phys. B, 969 (2021), 115465, 14 pp. | DOI | MR
[29] Y. Zhang, “On a reduction of the multi-component KP hierarchy”, J. Phys. A: Math. Gen., 32:36 (1999), 6461–6476 | DOI | MR
[30] C.-Z. Li, J.-P. Cheng, “Quantum torus symmetries of multicomponent modified KP hierarchy and reductions”, J. Geom. Phys., 137 (2019), 76–86, arXiv: 1907.04688 | DOI | MR
[31] Chuan-Chzhun Li, “Konechnomernye tau-funktsii ierarkhii universalnykh kharakterov”, TMF, 206:3 (2021), 368–383 | DOI | DOI | MR
[32] Chuan-Chzhun Li, “Mnogokomponentnaya ierarkhiya Volterra drobnogo poryadka i ee subierarkhiya s simmetriei Virasoro”, TMF, 207:1 (2021), 3–22 | DOI | DOI