Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 193-213 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the inverse problem of successively finding two unknowns (a one-dimensional integral operator kernel and a two-dimensional wave propagation velocity) for the viscoelasticity equation in a weakly horizontally inhomogeneous medium. The direct initial boundary value problem for the displacement function contains zero initial data and the Neumann boundary condition of special form. Additional information consists in the Fourier transform of the displacement function at $x_3=0$. We assume that the unknown functions are expanded in an asymptotic power series in a small parameter. We prove theorems on the global unique solvability and stability of the inverse problem solution.
Keywords: linear viscoelasticity, inverse problem, delta function, stability.
Mots-clés : Fourier transform, kernel, coefficient
@article{TMF_2022_213_2_a0,
     author = {Zh. D. Totieva},
     title = {Coefficient reconstruction problem for the~two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {193--213},
     year = {2022},
     volume = {213},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a0/}
}
TY  - JOUR
AU  - Zh. D. Totieva
TI  - Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 193
EP  - 213
VL  - 213
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a0/
LA  - ru
ID  - TMF_2022_213_2_a0
ER  - 
%0 Journal Article
%A Zh. D. Totieva
%T Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 193-213
%V 213
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a0/
%G ru
%F TMF_2022_213_2_a0
Zh. D. Totieva. Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 2, pp. 193-213. http://geodesic.mathdoc.fr/item/TMF_2022_213_2_a0/

[1] A. Lorenzi, E. Sinestrari, “An inverse problem in the theory of materials with memory”, Nonlinear Anal., 12:12 (1988), 1317–1335 | DOI | MR

[2] A. Lorenzi, “An inverse problem in the theory of materials with memory. II”, Semigroup Theory and Applications, Lecture Notes in Pure and Applied Mathematics, 116, eds. Ph. Clement, S. Invernizzi, E. Mitidieri, I. Vrabie, Dekker, New York, 1989, 261–290 | MR

[3] D. K. Durdiev, “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v crede c pamyatyu”, Matematicheskii analiz i dickretnaya matematika, NGU, Novocibirck, 1989, 19–26 | MR | Zbl

[4] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Mat. Univ. Padova, 87 (1992), 105–138 | MR | Zbl

[5] A. L. Bukhgeim, “Inverse problems of memory reconstruction”, J. Inverse Ill-Posed Probl., 1:3 (1993), 193–205 | DOI | MR

[6] D. K. Durdiev, “Mnogomernaya obratnaya zadacha dlya uravneniya c pamyatyu”, Sib. matem. zhurn., 35:3 (1994), 574–582 | DOI | MR | Zbl

[7] A. L. Bukhgeim, G. V. Dyatlov, “Inverse problems for equations with memory”, SIAM J. Math. Fool., 1:2 (1998), 1–17

[8] D. K. Durdiev, Obratnye zadachi dlya cred c pocledeictviem, Turon-Ikbol, Tashkent, 2014

[9] A. Lorenzi, Zh. Sh. Ulekova, V. G. Yakhno, “An inverse problem in viscoelasticity”, J. Inverse Ill-Posed Probl., 2:2 (1994), 131–164 | DOI | MR

[10] J. Janno, L. von Wolfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[11] J. Janno, L. von Wolfersdorf, “An inverse problem for identification of a time- and space-dependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR

[12] A. Lorenzi, F. Messina, V. G. Romanov, “Recovering a Lamé kernel in a viscoelastic system”, Appl. Anal., 86:11 (2007), 1375–1395 | DOI | MR

[13] V. G. Romanov, M. Yamamoto, “Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement”, Appl. Anal., 89:3 (2010), 377–390 | DOI | MR

[14] A. Lorenzi, V. G. Romanov, “Recovering two Lamé kernels in a viscoelastic system”, Inverse Probl. Imaging, 5:2 (2011), 431–464 | DOI | MR

[15] V. G. Romanov, “Dvumernaya obratnaya zadacha dlya uravneniya vyazkouprugocti”, Sib. matem. zhurn., 53:6 (2012), 1401–1412 | DOI | MR

[16] V. G. Romanov, “Inverse problems for differential equations with memory”, Eurasian J. Math. Comput. Appl., 2:4 (2014), 51–80 | DOI

[17] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya elektrovyazkouprugocti”, Sib. matem. zhurn., 58:3 (2017), 553–572 | DOI | MR

[18] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya cictemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi porictoi crede: globalnaya razreshimoct”, TMF, 195:3 (2018), 491–506 | DOI | DOI | MR

[19] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | Zbl

[20] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | DOI

[21] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comput. Appl., 8:2 (2020), 28–40 | DOI

[22] A. R. Davies, R. J. Douglas, “A kernel approach to deconvolution of the complex modulus in linear viscoelasticity”, Inverse Problems, 36:1 (2020), 015001, 22 pp. | DOI | MR

[23] Z. A. Akhmatov, Zh. D. Totieva, “Kvazidvumernaya koeffitsientnaya obratnaya zadacha dlya volnovogo uravneniya v slabo gorizontalno-neodnorodnoi srede s pamyatyu”, Vladikavk. matem. zhurn., 23:4 (2021), 15–27 | MR

[24] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugocti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43

[25] D. K. Durdiev, Z. R. Bozorov, “Zadacha opredeleniya yadra integro-differentsialnogo volnovogo uravneniya co clabo gorizontalnoi odnorodnoctyu”, Dalnevoct. matem. zhurn., 13:2 (2013), 209–221 | MR

[26] A. S. Blagoveschenckii, D. A. Fedorenko, “Obratnaya zadacha dlya uravneniya akustiki v slabo gorizontalno-neodnorodnoi srede”, Zap. nauchn. sem. POMI, 354, POMI, SPb., 2008, 81–99 | DOI

[27] V. G. Romanov, Obratnye zadachi matematicheckoi fiziki, Nauka, M., 1984 | MR

[28] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40

[29] V. G. Romanov, “Dvumernaya obratnaya zadacha dlya integro-differentsialnogo uravneniya elektrodinamiki”, Tr. IMM UrO RAN, 18:1 (2012), 273–280 | DOI

[30] V. G. Romanov, “Ob opredelenii koeffitsientov v uravneniyakh vyazkouprugosti”, Sib. matem. zhurn., 55:3 (2014), 617–626 | DOI | MR

[31] A. A. Rakhmonov, U. D. Durdiev, Z. R. Bozorov, “Zadacha opredeleniya skorosti zvuka i funktsii pamyati anizotropnoi sredy”, TMF, 207:1 (2021), 112–132 | DOI | DOI

[32] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugocti”, Sib. zhurn. inductr. matem., 16:2 (2013), 72–82 | MR

[33] V. G. Yakhno, Obratnye zadachi dlya differentsialnykh uravnenii uprugocti, Nauka, Novocibirck, 1990 | MR