Mots-clés : Calabi–Yau moduli space.
@article{TMF_2022_213_1_a8,
author = {A. A. Belavin and B. A. Eremin},
title = {Multiple mirrors and {the~JKLMR} conjecture},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--162},
year = {2022},
volume = {213},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/}
}
A. A. Belavin; B. A. Eremin. Multiple mirrors and the JKLMR conjecture. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 149-162. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/
[1] P. Candelas, X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 355:2 (1991), 455–481 | DOI | MR
[2] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys. A, 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR
[3] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170, arXiv: 1208.6244 | DOI | MR
[4] F. Benini, S. Cremonesi, “Partition functions of ${\mathcal{N}=(2,2)}$ gauge theories on S$^{2}$ and vortices”, Commun. Math. Phys., 334:3 (2015), 1483–1527, arXiv: 1206.2356 | DOI | MR
[5] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05:3 (2013), 093, 69 pp., arXiv: 1206.2606 | DOI | MR
[6] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019:3, 034003, 9 pp., arXiv: 1812.00478 | DOI | MR
[7] K. Aleshkin, A. Belavin, “GLSM for Berglund–Hübsch type Calabi–Yau manifolds”, Pisma v ZhETF, 110:11 (2019), 727–728, arXiv: 1911.11678 | DOI
[8] A. A. Artemev, I. V. Kochergin, “O vychislenii spetsialnoi geometrii dlya Kalabi–\allowbreakYau tipa “petlya” i dvukh konstruktsiyakh zerkalnogo mnogoobraziya”, Pisma v ZhETF, 112:5 (2020), 291–296 | DOI | DOI
[9] I. V. Kochergin, “Calabi–Yau manifolds in weighted projective spaces and their mirror gauged linear sigma models”, Phys. Rev. D, 105:6 (2022), 066008, 14 pp., arXiv: 2112.06335 | DOI | MR
[10] M. Krawitz, FJRW rings and Landau–Ginzburg mirror symmetry, arXiv: 0906.0796
[11] T. L. Kelly, “Berglund–Hubsch–Krawitz mirrors via Shioda maps”, Adv. Theor. Math. Phys., 17:6 (2013), 1425–1449 | DOI | MR
[12] A. Belavin, V. Belavin, G. Koshevoy, “Periods of the multiple Berglund–Hübsch–Krawitz mirrors”, Lett. Math. Phys., 111:4 (2021), 93, 18 pp., arXiv: 2012.03320 | DOI | MR
[13] M. Kreuzer, H. Skarke, “On the classification of quasihomogeneous functions”, Commun. Math. Phys., 150:1 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR
[14] A. Belavin, B. Eremin, “On the equivalence of Batyrev and BHK mirror symmetry constructions”, Nucl. Phys. B, 961 (2020), 115271, 10 pp., arXiv: 2010.07687 | DOI
[15] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Mirror symmetry II, AMS/IP Studies in Advanced Mathematics, 1, eds. B. R. Greene, S.-T. Yau, AMS, Providence, RI, 1996, 143–211, arXiv: hep-th/9301042 | DOI | MR
[16] P. Berglund, T. Hubsch, “A generalized construction of Calabi–Yau models and mirror symmetry”, SciPost Phys., 4:2 (2018), 009, 30 pp., arXiv: hep-th/1611.10300 | DOI
[17] P. Candelas, X. C. de la Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Mirror Symmetry I, AMS/IP Studies in Advanced Mathematics, 9, ed. S.-T. Yau, AMS, Providence, RI, 1998, 31–95 | DOI | Zbl
[18] A. Belavin, B. Eremin, “Zerkalnye pary orbifoldov kvintiki”, Pisma v ZhETF, 112:6 (2020), 388–393 | DOI | DOI