Multiple mirrors and the JKLMR conjecture
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 149-162 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We address the problem of the fulfillment of the conjecture proposed by Jockers et al. (JKLMR conjecture) on the equality of the partition function of a supersymmetric gauged linear sigma model on the sphere $S^2$ and the exponential of the Kähler potential on the moduli space of Calabi–Yau manifolds. The problem is considered for a specific class of Calabi–Yau manifolds that does not belong to the Fermat type class. We show that the JKLMR conjecture holds when a Calabi–Yau manifold $X(1)$ of such type has a mirror partner $Y(1)$ in a weighted projective space that also admits a Calabi–Yau manifold of Fermat type $Y(2)$. Moreover, the mirror $X(2)$ for $Y(2)$ has the same special geometry on the moduli space of complex structures as the original $X(1)$.
Keywords: Calabi–Yau manifold, mirror symmetry, multiple mirrors
Mots-clés : Calabi–Yau moduli space.
@article{TMF_2022_213_1_a8,
     author = {A. A. Belavin and B. A. Eremin},
     title = {Multiple mirrors and {the~JKLMR} conjecture},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--162},
     year = {2022},
     volume = {213},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - B. A. Eremin
TI  - Multiple mirrors and the JKLMR conjecture
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 149
EP  - 162
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/
LA  - ru
ID  - TMF_2022_213_1_a8
ER  - 
%0 Journal Article
%A A. A. Belavin
%A B. A. Eremin
%T Multiple mirrors and the JKLMR conjecture
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 149-162
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/
%G ru
%F TMF_2022_213_1_a8
A. A. Belavin; B. A. Eremin. Multiple mirrors and the JKLMR conjecture. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 149-162. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a8/

[1] P. Candelas, X. C. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 355:2 (1991), 455–481 | DOI | MR

[2] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys. A, 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR

[3] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170, arXiv: 1208.6244 | DOI | MR

[4] F. Benini, S. Cremonesi, “Partition functions of ${\mathcal{N}=(2,2)}$ gauge theories on S$^{2}$ and vortices”, Commun. Math. Phys., 334:3 (2015), 1483–1527, arXiv: 1206.2356 | DOI | MR

[5] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05:3 (2013), 093, 69 pp., arXiv: 1206.2606 | DOI | MR

[6] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019:3, 034003, 9 pp., arXiv: 1812.00478 | DOI | MR

[7] K. Aleshkin, A. Belavin, “GLSM for Berglund–Hübsch type Calabi–Yau manifolds”, Pisma v ZhETF, 110:11 (2019), 727–728, arXiv: 1911.11678 | DOI

[8] A. A. Artemev, I. V. Kochergin, “O vychislenii spetsialnoi geometrii dlya Kalabi–\allowbreakYau tipa “petlya” i dvukh konstruktsiyakh zerkalnogo mnogoobraziya”, Pisma v ZhETF, 112:5 (2020), 291–296 | DOI | DOI

[9] I. V. Kochergin, “Calabi–Yau manifolds in weighted projective spaces and their mirror gauged linear sigma models”, Phys. Rev. D, 105:6 (2022), 066008, 14 pp., arXiv: 2112.06335 | DOI | MR

[10] M. Krawitz, FJRW rings and Landau–Ginzburg mirror symmetry, arXiv: 0906.0796

[11] T. L. Kelly, “Berglund–Hubsch–Krawitz mirrors via Shioda maps”, Adv. Theor. Math. Phys., 17:6 (2013), 1425–1449 | DOI | MR

[12] A. Belavin, V. Belavin, G. Koshevoy, “Periods of the multiple Berglund–Hübsch–Krawitz mirrors”, Lett. Math. Phys., 111:4 (2021), 93, 18 pp., arXiv: 2012.03320 | DOI | MR

[13] M. Kreuzer, H. Skarke, “On the classification of quasihomogeneous functions”, Commun. Math. Phys., 150:1 (1992), 137–147, arXiv: hep-th/9202039 | DOI | MR

[14] A. Belavin, B. Eremin, “On the equivalence of Batyrev and BHK mirror symmetry constructions”, Nucl. Phys. B, 961 (2020), 115271, 10 pp., arXiv: 2010.07687 | DOI

[15] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Mirror symmetry II, AMS/IP Studies in Advanced Mathematics, 1, eds. B. R. Greene, S.-T. Yau, AMS, Providence, RI, 1996, 143–211, arXiv: hep-th/9301042 | DOI | MR

[16] P. Berglund, T. Hubsch, “A generalized construction of Calabi–Yau models and mirror symmetry”, SciPost Phys., 4:2 (2018), 009, 30 pp., arXiv: hep-th/1611.10300 | DOI

[17] P. Candelas, X. C. de la Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Mirror Symmetry I, AMS/IP Studies in Advanced Mathematics, 9, ed. S.-T. Yau, AMS, Providence, RI, 1998, 31–95 | DOI | Zbl

[18] A. Belavin, B. Eremin, “Zerkalnye pary orbifoldov kvintiki”, Pisma v ZhETF, 112:6 (2020), 388–393 | DOI | DOI