Quasi-triangular structures on the super-Yangian and quantum loop superalgebra and difference equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 129-148
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Following the  V. Toledano-Laredo and S. Gautam approach we consider structures of tensor categories on analogues of the category $\mathfrak{O} $ for representations of the super Yangian $Y_ {\ hbar} (A (m, n)) $ of the special linear superalgebra Lie and the quantum loop superalgebra $U_q (LA (m, n)) $, we investigate the connection between them. The connection between Quasi-triangular structures and Abelian difference equations, which are determined by the Abelian parts of the universal R-matrices, is also described.
Bibliography: 34 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Yangian of Lie superalgebra, quantum loop superalgebra, Yangian module, category of $\mathfrak{O}$ representations, Lie superalgebra, Hopf superalgebra, tensor category, difference equations.
Mots-clés : universal R-matrix, quasitriangular structure
                    
                  
                
                
                Mots-clés : universal R-matrix, quasitriangular structure
@article{TMF_2022_213_1_a7,
     author = {V. A. Stukopin},
     title = {Quasi-triangular structures on the {super-Yangian} and quantum loop superalgebra and difference equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {129--148},
     publisher = {mathdoc},
     volume = {213},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a7/}
}
                      
                      
                    TY - JOUR AU - V. A. Stukopin TI - Quasi-triangular structures on the super-Yangian and quantum loop superalgebra and difference equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 129 EP - 148 VL - 213 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a7/ LA - ru ID - TMF_2022_213_1_a7 ER -
%0 Journal Article %A V. A. Stukopin %T Quasi-triangular structures on the super-Yangian and quantum loop superalgebra and difference equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 129-148 %V 213 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a7/ %G ru %F TMF_2022_213_1_a7
V. A. Stukopin. Quasi-triangular structures on the super-Yangian and quantum loop superalgebra and difference equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 129-148. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a7/
