Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 108-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that the complex hypergeometric function describing $6j$-symbols for the $SL(2,\mathbb C)$ group is a special degeneration of the $V$-function—an elliptic analogue of the Euler–Gauss ${}_2F_1$ hypergeometric function. For this function, we derive mixed difference–recurrence relations as limit forms of the elliptic hypergeometric equation and some symmetry transformations. At the intermediate steps of computations, there emerge a function describing the $6j$-symbols for the Faddeev modular double and the corresponding difference equations and symmetry transformations.
Keywords: $6j$-symbols, $SL(2,\mathbb{C})$ group, elliptic hypergeometric function.
@article{TMF_2022_213_1_a6,
     author = {S. E. Derkachov and G. A. Sarkissian and V. P. Spiridonov},
     title = {Elliptic hypergeometric function and $6j$-symbols for the~$SL(2,\pmb{\mathbb C})$ group},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {108--128},
     year = {2022},
     volume = {213},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a6/}
}
TY  - JOUR
AU  - S. E. Derkachov
AU  - G. A. Sarkissian
AU  - V. P. Spiridonov
TI  - Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 108
EP  - 128
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a6/
LA  - ru
ID  - TMF_2022_213_1_a6
ER  - 
%0 Journal Article
%A S. E. Derkachov
%A G. A. Sarkissian
%A V. P. Spiridonov
%T Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 108-128
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a6/
%G ru
%F TMF_2022_213_1_a6
S. E. Derkachov; G. A. Sarkissian; V. P. Spiridonov. Elliptic hypergeometric function and $6j$-symbols for the $SL(2,\pmb{\mathbb C})$ group. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 108-128. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a6/

[1] G. E. Andrews, R. Askey, R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR

[2] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965 | DOI | MR | MR | Zbl

[3] D. A. Varshalovich, A. I. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka. Leningr. otd., L., 1975 | DOI | MR | Zbl

[4] G. Racah, “Theory of complex spectra. II”, Phys. Rev., 62:9–10 (1942), 438–462 | DOI

[5] R. Askey, J. Wilson, Some Basic Hypergeometric Orthogonal Polynomials that Generalize Jacobi Polynomials, Memoirs of the American Mathematical Society, 54, No 319, AMS, Providence, RI, 1985 | DOI | MR

[6] W. Groenevelt, “Wilson function transforms related to Racah coefficients”, Acta Appl. Math., 91:2 (2006), 133–191 | DOI | MR

[7] A. N. Kirillov, N. Yu. Reshetikhin, “Representations of the algebra $U_q(sl(2))$, $q$-orthogonal polynomials and invariants of links”, New Developments in the Theory of Knots, Advanced Series in Mathematical Physics, 11, World Sci., Singapore, 1990, 202–256 | DOI | MR

[8] R. S. Ismagilov, “Ob operatorakh Raká dlya predstavlenii osnovnoi serii gruppy $\mathrm{SL}(2,\mathbb C)$”, Matem. sb., 198:3 (2007), 77–90 | DOI | DOI | MR | Zbl

[9] S. E. Derkachev, V. P. Spiridonov, “O $6j$-simvolakh dlya gruppy $SL(2,\mathbb C)$”, TMF, 198:1 (2019), 32–53, arXiv: 1711.07073 | DOI | DOI | MR

[10] L. D. Faddeev, “Modular double of a quantum group”, Conférence Moshé Flato 1999: Quantization, Deformation, and Symmetries (Dijon, France, September 5–8, 1999), v. 1, Mathematical Physics Studies, 21, eds. G. Dito, D. Sternheimer, Kluwer, Dordrecht, 2000, 149–156 | MR

[11] B. Ponsot, J. Teschner, “Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of $U_q(sl(2,\mathbb R))$”, Commun. Math. Phys., 224:3 (2001), 613–655, arXiv: math/0007097 | DOI | MR

[12] L. D. Faddeev, “Current-like variables in massive and massless integrable models”, Quantum Groups and their Applications in Physics (Varenna, Italy, 1994), Proceedings of the International School of Physics “Enrico Fermi”, 127, IOS Press, Amsterdam, 1996, 117–135, arXiv: hep-th/9408041 | MR

[13] L. D. Faddeev, “Discrete Heisenberg–Weyl group and modular group”, Lett. Math. Phys., 34:3 (1995), 249–254, arXiv: hep-th/9504111 | DOI | MR

[14] S. N. M. Ruijsenaars, “A generalized hypergeometric function satisfying four analytic difference equations of Askey–Wilson type”, Commun. Math. Phys., 206:3 (1999), 639–690 | DOI | MR

[15] I. B. Frenkel, V. G. Turaev, “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, eds. V. I. Arnold, I. M. Gelfand, V. S. Retakh, M. Smirnov, Birkhäuser, Boston, MA, 1997, 171–204 | MR | Zbl

[16] V. P. Spiridonov, “Theta hypergeometric integrals”, Algebra i analiz, 15:6 (2003), 161–215, arXiv: math.CA/0303205 | DOI | MR | Zbl

[17] V. P. Spiridonov, Ellipticheskie gipergeometricheskie funktsii, Diss. ... dokt. fiz.-matem. nauk, OIYaI, Dubna, 2004, arXiv: 1610.01557

[18] V. P. Spiridonov, “Ellipticheskie gipergeometricheskie funktsii i modeli tipa Kalodzhero–Sazerlenda”, TMF, 150:2 (2007), 311–324 | DOI | DOI | MR | Zbl

[19] G. A. Sarkissian, V. P. Spiridonov, “The endless beta integrals”, SIGMA, 16 (2020), 074, 21 pp., arXiv: 2005.01059 | DOI | MR

[20] V. P. Spiridonov, “Ob ellipticheskoi beta-funktsii”, UMN, 56:1 (2001), 181–182 | DOI | DOI | MR | Zbl

[21] S. E. Derkachov, A. N. Manashov, “On complex gamma-function integrals”, SIGMA, 16 (2020), 003, 20 pp., arXiv: 1908.01530 | MR

[22] G. A. Sarkisyan, V. P. Spiridonov, “Ratsionalnye gipergeometricheskie tozhdestva”, Funkts. analiz i ego pril., 55:3 (2021), 91–97, arXiv: 2012.10265 | DOI | DOI

[23] I. M. Gelfand, M. I. Graev, N. Ya. Vilenkin, Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatgiz, M., 1962

[24] S. E. Derkachov, A. N. Manashov, P. A. Valinevich, “Gustafson integrals for $SL(2,\mathbb C)$ spin magnet”, J. Phys. A: Math. Theor., 50:29 (2017), 294007, 12 pp. | DOI | MR

[25] Yu. A. Neretin, “Barnes–Ismagilov integrals and hypergeometric functions of the complex field”, SIGMA, 16 (2020), 072, 20 pp., arXiv: 1910.10686 | DOI | MR

[26] M. A. Naimark, “Razlozhenie tenzornogo proizvedeniya neprivodimykh predstavlenii sobstvennoi gruppy Lorentsa na neprivodimye predstavleniya. Chast I. Sluchai tenzornogo proizvedeniya predstavlenii osnovnoi serii”, Tr. MMO, 8 (1959), 121–153 | MR | Zbl

[27] S. N. M. Ruijsenaars, “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38:2 (1997), 1069–1146 | DOI | MR

[28] S. Kharchev, D. Lebedev, M. Semenov-Tian-Shansky, “Unitary representations of $U_q(\mathfrak{sl}(2,\mathbb R)$, the modular double, and the multiparticle $q$-deformed Toda chains”, Commun. Math. Phys., 225:3 (2002), 573–609, arXiv: hep-th/0102180 | DOI | MR

[29] V. V. Bazhanov, V. V. Mangazeev, S. M. Sergeev, “Exact solution of the Faddeev–Volkov model”, Phys. Lett. A, 372:10 (2008), 1547–1550, arXiv: 0706.3077 | DOI | MR

[30] E. M. Rains, “Limits of elliptic hypergeometric integrals”, Ramanujan J., 18:3 (2009), 257–306 | DOI | MR

[31] F. J. van de Bult, E. M. Rains, J. V. Stokman, “Properties of generalized univariate hypergeometric functions”, Commun. Math. Phys., 275:1 (2007), 37–95, arXiv: math/0607250 | DOI | MR

[32] G. Sarkissian, V. Spiridonov, “Complex hypergeometric functions and integrable many-body problems”, J. Phys. A: Math. Theor., 55:38 (2022), 385203, 17 pp., arXiv: 2105.15031 | DOI