Mots-clés : trace formula.
@article{TMF_2022_213_1_a5,
author = {\v{C}. Burd{\'\i}k and O. Navr\'atil},
title = {Trace formula for the~$RTT$-algebra of $sp(4)$ type},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {95--107},
year = {2022},
volume = {213},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a5/}
}
Č. Burdík; O. Navrátil. Trace formula for the $RTT$-algebra of $sp(4)$ type. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 95-107. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a5/
[1] Ch. Burdik, O. Navratil, “Vlozhennyi anzats Bete dlya RTT-algebry tipa ${sp}(4)$”, TMF, 198:1 (2019), 3–18 | DOI | DOI | MR
[2] E. Mukhin, V. Tarasov, A. Varchenko, “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech., 2006:8 (2006), P08002, 44 pp., arXiv: math/0605015 | DOI | MR
[3] P. P. Kulish, N. Yu. Reshetikhin, “Diagonalization of $GL(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | DOI | MR | Zbl
[4] N. Yu. Reshetikhin, “Integriruemye modeli kvantovykh odnomernykh magnetikov s $O(n)$- i $Sp(2k)$-simmetriei”, TMF, 63:3 (1985), 347–366 | DOI | MR
[5] M. J. Martins, P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models”, Nucl. Phys. B, 500:1–3 (1997), 579–620, arXiv: hep-th/9703023 | DOI
[6] A. Gerrard, V. Regelskis, “Nested algebraic Bethe ansatz for deformed orthogonal and symplectic spin chains”, Nucl. Phys. B, 956 (2020), 115021, 30 pp., arXiv: 1912.11497 | DOI | MR