On symmetries of the~nonstationary
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 65-94
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study auto-Bäcklund transformations of the nonstationary second Painlevé hierarchy $\mathrm{P}_\mathrm{II}^{(n)}$ depending on $n$ parameters: a parameter $\alpha_n$ and times $t_1, \dots, t_{n-1}$. Using generators $s^{(n)}$ and $r^{(n)}$ of these symmetries, we construct an affine Weyl group $W^{(n)}$ and its extension $\widetilde{W}^{(n)}$ associated with the $n$th member of the hierarchy. We determine rational solutions of $\mathrm{P}_\mathrm{II}^{(n)}$ in terms of Yablonskii–Vorobiev-type polynomials $u_m^{(n)}(z)$. We show that Yablonskii–Vorobiev-type polynomials are related to the polynomial $\tau$-function $\tau_m^{(n)}(z)$ and find their determinant representation in the Jacobi–Trudi form.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Painlevé equations, Bäcklund transformations, affine Weyl groups, Yablonskii–Vorobiev polynomials, polynomial $\tau$-functions, Jacobi–Trudi determinants.
                    
                  
                
                
                @article{TMF_2022_213_1_a4,
     author = {I. A. Bobrova},
     title = {On symmetries of the~nonstationary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--94},
     publisher = {mathdoc},
     volume = {213},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/}
}
                      
                      
                    I. A. Bobrova. On symmetries of the~nonstationary. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 65-94. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/
