On symmetries of the nonstationary
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 65-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study auto-Bäcklund transformations of the nonstationary second Painlevé hierarchy $\mathrm{P}_\mathrm{II}^{(n)}$ depending on $n$ parameters: a parameter $\alpha_n$ and times $t_1, \dots, t_{n-1}$. Using generators $s^{(n)}$ and $r^{(n)}$ of these symmetries, we construct an affine Weyl group $W^{(n)}$ and its extension $\widetilde{W}^{(n)}$ associated with the $n$th member of the hierarchy. We determine rational solutions of $\mathrm{P}_\mathrm{II}^{(n)}$ in terms of Yablonskii–Vorobiev-type polynomials $u_m^{(n)}(z)$. We show that Yablonskii–Vorobiev-type polynomials are related to the polynomial $\tau$-function $\tau_m^{(n)}(z)$ and find their determinant representation in the Jacobi–Trudi form.
Mots-clés : Painlevé equations
Keywords: Bäcklund transformations, affine Weyl groups, Yablonskii–Vorobiev polynomials, polynomial $\tau$-functions, Jacobi–Trudi determinants.
@article{TMF_2022_213_1_a4,
     author = {I. A. Bobrova},
     title = {On symmetries of the~nonstationary},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {65--94},
     year = {2022},
     volume = {213},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/}
}
TY  - JOUR
AU  - I. A. Bobrova
TI  - On symmetries of the nonstationary
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 65
EP  - 94
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/
LA  - ru
ID  - TMF_2022_213_1_a4
ER  - 
%0 Journal Article
%A I. A. Bobrova
%T On symmetries of the nonstationary
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 65-94
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/
%G ru
%F TMF_2022_213_1_a4
I. A. Bobrova. On symmetries of the nonstationary. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 65-94. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a4/

[1] P. Painlevé, “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR

[2] P. Painlevé, “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR

[3] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR

[4] N. A. Kudryashov, “The first and second Painlevé equations of higher order and some relations between them”, Phys. Lett. A, 224:6 (1997), 353–360 | DOI | MR

[5] K. Kajiwara, Y. Ohta, “Determinant structure of the rational solutions for the Painlevé II equation”, J. Math. Phys., 37:9 (1996), 4693–4704 | DOI | MR

[6] S. Fukutani, K. Okamoto, H. Umemura, “Special polynomials and the Hirota bilinear relations of the second and the fourth Painlevé equations”, Nagoya Math. J., 159 (2000), 179–200 | DOI | MR

[7] K. Kajiwara, M. Mazzocco, Y. Ohta, “A remark on the {H}ankel determinant formula for solutions of the Toda equation”, J. Phys. A: Math. Theor., 40:42 (2007), 12661–12675, arXiv: nlin/0701029 | DOI | MR

[8] M. Noumi, Painlevé Equations through Symmetry, Translations of Mathematical Monograph, 223, AMS, Providence, RI, 2004 | DOI | MR

[9] A. I. Yablonskii, “O ratsionalnykh resheniyakh vtorogo uravneniya Penleve”, Izv. BSSR. Ser. fiz.-tekhn. nauk, 3 (1959), 30–35 | MR

[10] A. P. Vorobev, “O ratsionalnykh resheniyakh vtorogo uravneniya Penleve”, Differents. uravneniya, 1:1 (1965), 79–81 | MR

[11] M. Mazzocco, M. Y. Mo, “The Hamiltonian structure of the second Painlevé hierarchy”, Nonlinearity, 20:12 (2007), 2845–2882, arXiv: nlin/0610066 | DOI | MR

[12] N. Joshi, “The second Painlevé hierarchy and the stationary KdV hierarchy”, Publ. RIMS, Kyoto Univ., 40:3 (2004), 1039–1061 | DOI | MR

[13] P. A. Clarkson, N. Joshi, A. Pickering, “Bäcklund transformations for the second Painlevé hierarchy: a modified truncation approach”, Inverse Problems, 15:1 (1999), 175–187, arXiv: solv-int/9811014 | DOI | MR

[14] K. Fujii, A higher order non-linear differential equation and a generalization of the Airy function, arXiv: 0712.2481

[15] N. A. Kudryashov, M. V. Demina, “The generalized Yablonskii–Vorob'ev polynomials and their properties”, Phys. Lett. A, 372:29 (2008), 4885–4890 | DOI | MR

[16] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR

[17] K. Kajiwara, M. Noumi, Y. Yamada, “Geometric aspects of Painlevé equations”, J. Phys. A: Math. Theor., 50:7 (2017), 073001, 164 pp., arXiv: 1509.08186 | DOI | MR

[18] V. I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter, New York, 2002 | DOI | MR

[19] V. Kac, J. van de Leur, “Polynomial tau-functions of BKP and DKP hierarchies”, J. Math. Phys., 60:7 (2019), 071702, 10 pp., arXiv: 1811.08733 | DOI | MR

[20] K. Iwasaki, K. Kajiwara, T. Nakamura, “Generating function associated with the rational solutions of the Painlevé II equation”, J. Phys. A: Math. Gen., 35:16 (2002), L207, arXiv: nlin/0112043 | DOI