Elliptic families of solutions of the constrained Toda
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 57-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study elliptic families of solutions of the recently introduced constrained Toda hierarchy, i.e., solutions that are elliptic functions of some linear combination of the hierarchical times. Equations of motion for poles of such solutions are obtained.
Keywords: constrained Toda hierarchy
Mots-clés : elliptic solutions.
@article{TMF_2022_213_1_a3,
     author = {A. V. Zabrodin},
     title = {Elliptic families of solutions of the~constrained {Toda}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {57--64},
     year = {2022},
     volume = {213},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Elliptic families of solutions of the constrained Toda
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 57
EP  - 64
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/
LA  - ru
ID  - TMF_2022_213_1_a3
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Elliptic families of solutions of the constrained Toda
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 57-64
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/
%G ru
%F TMF_2022_213_1_a3
A. V. Zabrodin. Elliptic families of solutions of the constrained Toda. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 57-64. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/

[1] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[3] M. Jimbo, T. Miwa, “Soliton equations and infinite dimensional Lie algebras”, Publ. RIMS, Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[4] I. Krichever, A. Zabrodin, “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model”, Lett. Math. Phys., 112:2 (2022), 23, 26 pp., arXiv: 2109.05240 | DOI | MR

[5] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–De Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR

[6] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl

[7] D. V. Choodnovsky, G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1977), 339–353 | DOI | MR

[8] F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12:3 (1971), 419–436 | DOI | MR

[9] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 | DOI | MR

[10] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR

[11] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR

[12] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl

[13] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306), 3–56 | DOI | MR | Zbl

[14] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp., arXiv: 1905.11383 | DOI | MR

[15] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl

[16] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR

[17] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Ellipticheskie semeistva reshenii uravneniya Kadomtseva–Petviashvili i polevoi analog ellipticheskoi sistemy Kalodzhero–Mozera”, Funkts. analiz i ego pril., 36:4 (2002), 1–17 | DOI | DOI | MR | Zbl

[18] A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 023, 51 pp., arXiv: 2107.01697 | DOI

[19] T. Takebe, “Toda lattice hierarchy and conservation laws”, Commun. Math. Phys., 129:2 (1990), 281–318 | DOI | MR

[20] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Lecture Notes, 2, Research Center for Mathematical Physics, Rikkyo Universty, Tokyo, Japan, 2014

[21] I. Krichever, A. Zabrodin, “Kadomtsev–Petviashvili turning points and CKP hierarchy”, Commun. Math. Phys., 386:3 (2021), 1643–1683, arXiv: 2012.04482 | DOI | MR