Mots-clés : elliptic solutions.
@article{TMF_2022_213_1_a3,
author = {A. V. Zabrodin},
title = {Elliptic families of solutions of the~constrained {Toda}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {57--64},
year = {2022},
volume = {213},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/}
}
A. V. Zabrodin. Elliptic families of solutions of the constrained Toda. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 57-64. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a3/
[1] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl
[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[3] M. Jimbo, T. Miwa, “Soliton equations and infinite dimensional Lie algebras”, Publ. RIMS, Kyoto Univ., 19:3 (1983), 943–1001 | DOI | MR | Zbl
[4] I. Krichever, A. Zabrodin, “Constrained Toda hierarchy and turning points of the Ruijsenaars–Schneider model”, Lett. Math. Phys., 112:2 (2022), 23, 26 pp., arXiv: 2109.05240 | DOI | MR
[5] H. Airault, H. P. McKean, J. Moser, “Rational and elliptic solutions of the Korteweg–De Vries equation and a related many-body problem”, Commun. Pure Appl. Math., 30:1 (1977), 95–148 | DOI | MR
[6] I. M. Krichever, “O ratsionalnykh resheniyakh uravneniya Kadomtseva–Petviashvili i ob integriruemykh sistemakh $N$ chastits na pryamoi”, Funkts. analiz i ego pril., 12:1 (1978), 76–78 | DOI | MR | Zbl
[7] D. V. Choodnovsky, G. V. Choodnovsky, “Pole expansions of nonlinear partial differential equations”, Nuovo Cimento B, 40:2 (1977), 339–353 | DOI | MR
[8] F. Calogero, “Solution of the one-dimensional $N$-body problems with quadratic and/or inversely quadratic pair potentials”, J. Math. Phys., 12:3 (1971), 419–436 | DOI | MR
[9] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 | DOI | MR
[10] J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR
[11] M. A. Olshanetsky, A. M. Perelomov, “Classical integrable finite-dimensional systems related to Lie algebras”, Phys. Rep., 71:5 (1981), 313–400 | DOI | MR
[12] I. M. Krichever, “Ellipticheskie resheniya uravneniya Kadomtseva–Petviashvili i integriruemye sistemy chastits”, Funkts. analiz i ego pril., 14:4 (1980), 45–54 | DOI | MR | Zbl
[13] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306), 3–56 | DOI | MR | Zbl
[14] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp., arXiv: 1905.11383 | DOI | MR
[15] S. N. M. Ruijsenaars, H. Schneider, “A new class of integrable systems and its relation to solitons”, Ann. Phys., 170:2 (1986), 370–405 | DOI | MR | Zbl
[16] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR
[17] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Ellipticheskie semeistva reshenii uravneniya Kadomtseva–Petviashvili i polevoi analog ellipticheskoi sistemy Kalodzhero–Mozera”, Funkts. analiz i ego pril., 36:4 (2002), 1–17 | DOI | DOI | MR | Zbl
[18] A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 023, 51 pp., arXiv: 2107.01697 | DOI
[19] T. Takebe, “Toda lattice hierarchy and conservation laws”, Commun. Math. Phys., 129:2 (1990), 281–318 | DOI | MR
[20] T. Takebe, Lectures on Dispersionless Integrable Hierarchies, Lecture Notes, 2, Research Center for Mathematical Physics, Rikkyo Universty, Tokyo, Japan, 2014
[21] I. Krichever, A. Zabrodin, “Kadomtsev–Petviashvili turning points and CKP hierarchy”, Commun. Math. Phys., 386:3 (2021), 1643–1683, arXiv: 2012.04482 | DOI | MR