Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 41-56
Cet article a éte moissonné depuis la source Math-Net.Ru
The discrete KP hierarchy and its strict version are both deformations of the commutative algebra $k[\Lambda]$ inside the algebra $\mathrm{Ps}\kern1.1pt\Delta$ of pseudo-difference operators, where $\Lambda$ is the $\mathbb{Z}\times\mathbb{Z}$-matrix corresponding to the shift operator and $k=\mathbb{R}$ or $k=\mathbb{C}$. Under these deformations, the matrix coefficients of the elements of $\mathrm{Ps}\kern1.1pt\Delta$ come from a commutative $k$-algebra $R$. We discuss both deformations from a wider perspective and consider them in a presetting instead of a setting. In this more general setup, we present a number of $k$-subalgebras of $R$ that are stable under the basic derivations of $R$ and such that these derivations commute on these $k$-subalgebras. This is used to introduce the minimal realizations of both deformations. We relate these realizations to solutions in different settings and use them to show that both hierarchies possess invariant scaling transformations.
Keywords:
pseudo-difference operators, (strict) dKP hierarchy, minimal realizations, scaling transformations.
Mots-clés : Lax equations
Mots-clés : Lax equations
@article{TMF_2022_213_1_a2,
author = {G. F. Helminck and V. A. Poberezhny and S. V. Polenkova},
title = {Minimal realizations and scaling invariance of the~ discrete {KP} hierarchy and its strict version},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--56},
year = {2022},
volume = {213},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/}
}
TY - JOUR AU - G. F. Helminck AU - V. A. Poberezhny AU - S. V. Polenkova TI - Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 41 EP - 56 VL - 213 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/ LA - ru ID - TMF_2022_213_1_a2 ER -
%0 Journal Article %A G. F. Helminck %A V. A. Poberezhny %A S. V. Polenkova %T Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 41-56 %V 213 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/ %G ru %F TMF_2022_213_1_a2
G. F. Helminck; V. A. Poberezhny; S. V. Polenkova. Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 41-56. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/
[1] M. Adler, P. van Moerbeke, “Vertex operator solutions to the discrete KP-hierarchy”, Commun. Math. Phys., 203:1 (1999), 185–210, arXiv: solv-int/9912014 | DOI | MR
[2] G. F. Khelmink, V. A. Poberezhnyi, S. V. Polenkova, “Strogie versii integriruemykh ierarkhii psevdoraznostnykh operatorov i soputstvuyuschikh zadach Koshi”, TMF, 198:2 (2019), 225–245 | DOI | DOI | MR
[3] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Étud. Sci., 61 (1985), 5–65 | DOI | MR | Zbl
[4] G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “A geometric construction of solutions of the strict $\mathrm{dKP}(\Lambda_0$) hierarchy”, J. Geom. Phys., 131 (2018), 189–203 | DOI | MR