Mots-clés : Lax equations
@article{TMF_2022_213_1_a2,
author = {G. F. Helminck and V. A. Poberezhny and S. V. Polenkova},
title = {Minimal realizations and scaling invariance of the~ discrete {KP} hierarchy and its strict version},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {41--56},
year = {2022},
volume = {213},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/}
}
TY - JOUR AU - G. F. Helminck AU - V. A. Poberezhny AU - S. V. Polenkova TI - Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 41 EP - 56 VL - 213 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/ LA - ru ID - TMF_2022_213_1_a2 ER -
%0 Journal Article %A G. F. Helminck %A V. A. Poberezhny %A S. V. Polenkova %T Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 41-56 %V 213 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/ %G ru %F TMF_2022_213_1_a2
G. F. Helminck; V. A. Poberezhny; S. V. Polenkova. Minimal realizations and scaling invariance of the discrete KP hierarchy and its strict version. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 41-56. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a2/
[1] M. Adler, P. van Moerbeke, “Vertex operator solutions to the discrete KP-hierarchy”, Commun. Math. Phys., 203:1 (1999), 185–210, arXiv: solv-int/9912014 | DOI | MR
[2] G. F. Khelmink, V. A. Poberezhnyi, S. V. Polenkova, “Strogie versii integriruemykh ierarkhii psevdoraznostnykh operatorov i soputstvuyuschikh zadach Koshi”, TMF, 198:2 (2019), 225–245 | DOI | DOI | MR
[3] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. Inst. Hautes Étud. Sci., 61 (1985), 5–65 | DOI | MR | Zbl
[4] G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “A geometric construction of solutions of the strict $\mathrm{dKP}(\Lambda_0$) hierarchy”, J. Geom. Phys., 131 (2018), 189–203 | DOI | MR