Explicitly solvable systems of first-order ordinary differential equations with homogeneous right-hand sides, and their periodic variants
Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we identify systems of an arbitrary number $N$ of first-order Ordinary Differential Equations with nonlinear homogeneous right-hand sides of an arbitrary (integer, positive or nonpositive) degree $M$, which feature very simple explicit solutions; as well as variants of these systems—with right-hand sides no more homogeneous—some of which feature periodic solutions. A novelty of these findings is to consider systems characterized by constraints involving their parameters and/or their initial data.
Keywords: explicitly solvable dynamical systems, solvable systems of first-order ODEs, isochronous dynamical systems.
@article{TMF_2022_213_1_a0,
     author = {F. Calogero and F. Payandeh},
     title = {Explicitly solvable systems of first-order ordinary differential equations with homogeneous right-hand sides, and their periodic variants},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {5--19},
     year = {2022},
     volume = {213},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a0/}
}
TY  - JOUR
AU  - F. Calogero
AU  - F. Payandeh
TI  - Explicitly solvable systems of first-order ordinary differential equations with homogeneous right-hand sides, and their periodic variants
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 5
EP  - 19
VL  - 213
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a0/
LA  - ru
ID  - TMF_2022_213_1_a0
ER  - 
%0 Journal Article
%A F. Calogero
%A F. Payandeh
%T Explicitly solvable systems of first-order ordinary differential equations with homogeneous right-hand sides, and their periodic variants
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 5-19
%V 213
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a0/
%G ru
%F TMF_2022_213_1_a0
F. Calogero; F. Payandeh. Explicitly solvable systems of first-order ordinary differential equations with homogeneous right-hand sides, and their periodic variants. Teoretičeskaâ i matematičeskaâ fizika, Tome 213 (2022) no. 1, pp. 5-19. http://geodesic.mathdoc.fr/item/TMF_2022_213_1_a0/

[1] F. Calogero, F. Payandeh, Explicitly solvable systems of first-order ordinary differential equations with polynomial right-hand sides, and their periodic variants, arXiv: 2106.06634

[2] A. D. Polyanin, V. F. Zaitsev, Exact solutions to homogeneous and quasi-homogeneous systems of nonlinear ODEs, arXiv: 2107.10759

[3] F. Calogero, F. Payandeh, A class of solutions of the asymmetric May–Leonard model, arXiv: 2107.11860

[4] R. Garnier, “Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme”, Ann. Sci. École Norm. Sup., 77:2 (1960), 123–144 | DOI | MR

[5] A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, MD, 1925

[6] V. Volterra, Leçons sur la théorie mathematique de la lutte pour la vie, Gauthiers-Villars, Paris, 1931 | MR

[7] P. A. Samuelson, Foundations of Economic Analysis, Harvard Univ. Press, Cambridge, 1947 | MR

[8] F. Calogero, R. Conte, F. Leyvraz, “New algebraically solvable systems of two autonomous first-order ordinary differential equations with purely quadratic right-hand sides”, J. Math. Phys., 61:10 (2020), 102704, 16 pp., arXiv: 2009.11200 | DOI | MR

[9] F. Calogero, F. Payandeh, “Solvable system of two coupled first-order ODEs with homogeneous cubic polynomial right-hand sides”, J. Math. Phys., 62:1 (2021), 012701, 21 pp., arXiv: 2012.13621 | DOI | MR

[10] F. Calogero, F. Payandeh, “Solution of the system of two coupled first-order ODEs with second-degree polynomial right-hand sides”, Math. Phys. Anal. Geom., 24:3 (2021), 29, 23 pp. | DOI | MR

[11] F. Dumortier, J. Llibre, J. C. Artés, Qualitative Theory of Planar Differential Systems, Universitex, Springer, Berlin, 2006 | DOI | MR

[12] J. C. Artés, J. Llibre, D. Schlomiuk, N. Vulpe, Geometric Configurations of Singularities of Planar Polynomial Differential Systems: A Global Classification in the Quadratic Case, Birkhäuser, Cham, 2021 | DOI | MR

[13] V. F. Zaitsev, A. D. Polyanin, Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatlit, M., 2003 | DOI | MR | MR | Zbl

[14] R. M. May, W. J. Leonard, “Nonlinear aspects of competition between three species”, SIAM J. Appl. Math., 29:2 (1975), 243–253 | DOI | MR

[15] V. Antonov, W. Fernandes, V. G. Romanovski, N. L. Shcheglova, “First integrals of the May–Leonard asymmetric system”, Mathematics, 7:3 (2019), 292, 15 pp. | DOI

[16] J. Llibre, Y. P. Martinez, C. Valls, “Global dynamics of a Lotka–Volterra system in $\mathbb{R}^{3}$”, J. Nonlinear Math. Phys., 27:3 (2020), 509–519 | DOI | MR

[17] F. Calogero, Isochronous Systems, Oxford Univ. Press, Oxford, 2008 | DOI | MR

[18] F. Calogero, F. Payandeh, Explicitly solvable systems of first-order difference equations with homogeneous polynomial right-hand sides, arXiv: 2108.04956

[19] F. Calogero, F. Payandeh, “Solution of the initial-values problem of first-order nonlinear recursions with homogeneous right-hand sides”, J. Math. Phys., 63:5 (2022), 052703, 11 pp. | DOI | MR