Entanglement entropy of a~near-extremal black hole
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 457-477
Voir la notice de l'article provenant de la source Math-Net.Ru
We study how the entanglement entropy of the Hawking radiation derived using the island recipe for the Reissner–Nordström black hole behaves as the black hole mass decreases. A general answer to the question essentially depends not only on the character of the mass decrease but also on the charge decrease. We assume a specific relation between the charge and mass $Q^2=GM^2[1-(M/\mu)^{2\nu}]$, which we call the constraint equation. We discuss whether it is possible to have a constraint such that the entanglement entropy does not blow up at the end of evaporation, as happens in the case of thermodynamic entropy and the entanglement entropy for the Schwarzschild black hole. We show that for some special scaling parameters, the entanglement entropy of radiation does not blow up if the mass of the evaporating black hole exceeds the Planck mass.
Keywords:
black holes, Hawking radiation, island formula.
Mots-clés : information paradox
Mots-clés : information paradox
@article{TMF_2022_212_3_a9,
author = {I. Ya. Aref'eva and I. V. Volovich and T. A. Rusalev},
title = {Entanglement entropy of a~near-extremal black hole},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {457--477},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/}
}
TY - JOUR AU - I. Ya. Aref'eva AU - I. V. Volovich AU - T. A. Rusalev TI - Entanglement entropy of a~near-extremal black hole JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 457 EP - 477 VL - 212 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/ LA - ru ID - TMF_2022_212_3_a9 ER -
I. Ya. Aref'eva; I. V. Volovich; T. A. Rusalev. Entanglement entropy of a~near-extremal black hole. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 457-477. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/