Mots-clés : information paradox
@article{TMF_2022_212_3_a9,
author = {I. Ya. Aref'eva and I. V. Volovich and T. A. Rusalev},
title = {Entanglement entropy of a~near-extremal black hole},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {457--477},
year = {2022},
volume = {212},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/}
}
TY - JOUR AU - I. Ya. Aref'eva AU - I. V. Volovich AU - T. A. Rusalev TI - Entanglement entropy of a near-extremal black hole JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 457 EP - 477 VL - 212 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/ LA - ru ID - TMF_2022_212_3_a9 ER -
I. Ya. Aref'eva; I. V. Volovich; T. A. Rusalev. Entanglement entropy of a near-extremal black hole. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 457-477. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/
[1] S. W. Hawking, “Particle creation by black holes”, Comm. Math. Phys., 43:3 (1975), 199–220 | DOI | MR
[2] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D, 14:10 (1976), 2460–2473 | DOI | MR
[3] D. N. Page, “Information in black hole radiation”, Phys. Rev. Lett., 71:23 (1993), 3743–3746, arXiv: hep-th/9306083 | DOI | MR
[4] D. N. Page, “Time dependence of Hawking radiation entropy”, J. Cosmol. Astropart. Phys., 2013:09 (2013), 028, 27 pp., arXiv: 1301.4995 | DOI | MR
[5] G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox”, JHEP, 2020:09 (2020), 002, 83 pp., arXiv: 1905.08255 | DOI | MR
[6] A. Almheiri, N. Engelhardt, D. Marolf, H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole”, JHEP, 2019:12 (2019), 063, 46 pp., arXiv: 1905.08762 | DOI | MR
[7] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, “The entropy of Hawking radiation”, Rev. Modern Phys., 93:3 (2021), 035002, 23 pp., arXiv: 2006.06872 | DOI | MR
[8] N. Engelhardt, A. C. Wall, “Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime”, JHEP, 2015:01 (2015), 073, 27 pp. | DOI
[9] S. Ryu, T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett., 96:18 (2006), 181602, 4 pp., arXiv: hep-th/0603001 | DOI | MR
[10] V. E. Hubeny, M. Rangamani, T. Takayanagi, “A covariant holographic entanglement entropy proposal”, JHEP, 2007:07 (2007), 062, 64 pp., arXiv: 0705.0016 | DOI | MR
[11] A. Almheiri, R. Mahajan, J. E. Santos, “Entanglement islands in higher dimensions”, SciPost Phys., 9:1 (2020), 001, 18 pp., arXiv: 1911.09666 | DOI | MR
[12] C. Krishnan, V. Patil, J. Pereira, Page curve and the information paradox in flat space, arXiv: 2005.02993
[13] K. Hashimoto, N. Iizuka, Y. Matsuo, “Islands in Schwarzschild black holes”, JHEP, 2020:06 (2020), 085, 20 pp., arXiv: 2004.05863 | DOI | MR
[14] M. Alishahiha, A. Faraji Astaneh, A. Naseh, “Island in the presence of higher derivative terms”, JHEP, 2021:02 (2021), 035, 20 pp., arXiv: 2005.08715 | DOI | MR
[15] Y. Matsuo, “Islands and stretched horizon”, JHEP, 2021:07 (2021), 051, 29 pp., arXiv: 2011.08814 | DOI | MR
[16] X. Wang, R. Li, J. Wang, “Islands and Page curves of Reissner–Nordström black holes”, JHEP, 2021:04 (2021), 103, 19 pp., arXiv: 2101.06867 | DOI | MR
[17] W. Kim, M. Nam, “Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island”, Eur. Phys. J. C, 81:10 (2021), 869, 10 pp., arXiv: 2103.16163 | DOI
[18] I. Aref'eva, I. Volovich, A note on islands in Schwarzschild black holes, arXiv: 2110.04233
[19] G. W. Gibbons, “Vacuum polarization and the spontaneous loss of charge by black holes”, Comm. Math. Phys., 44:3 (1975), 245–264 | DOI | MR
[20] W. T. Zaumen, “Upper bound on the electric charge of a black hole”, Nature, 247:5442 (1974), 530–531 | DOI
[21] B. Carter, “Charge and particle conservation in black-hole decay”, Phys. Rev. Lett., 33:9 (1974), 558–561 | DOI
[22] T. Damour, R. Ruffini, “Quantum electrodynamical effects in Kerr–Newmann geometries”, Phys. Rev. Lett., 35:7 (1975), 463–466 | DOI
[23] D. N. Page, “Particle emission rates from a black hole. II. Massless particles from a rotating hole”, Phys. Rev. D, 14:12 (1976), 3260–3273 | DOI
[24] W. A. Hiscock, L. D. Weems, “Evolution of charged evaporating black holes”, Phys. Rev. D, 41:4 (1990), 1142–1151 | DOI | MR
[25] Cl. Gabriel, “Spontaneous loss of charge of the Reissner–Nordström black hole”, Phys. Rev. D, 63:2 (2000), 024010, 4 pp. | DOI | MR
[26] E. Sorkin, T. Piran, “Formation and evaporation of charged black holes”, Phys. Rev. D, 63:12 (2001), 124024, arXiv: gr-qc/0103090 | DOI | MR
[27] Y. C. Ong, “The attractor of evaporating Reissner–Nordström black holes”, Eur. Phys. J. Plus, 136 (2021), 61, arXiv: 1909.09981 | DOI
[28] I. Aref'eva, I. Volovich, Complete evaporation of black holes and Page curves, arXiv: 2202.00548
[29] P. Calabrese, J. Cardy, “Entanglement entropy and conformal field theory”, J. Phys. A, 42:50 (2009), 504005, 36 pp., arXiv: 0905.4013 | DOI | MR