Entanglement entropy of a near-extremal black hole
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 457-477 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study how the entanglement entropy of the Hawking radiation derived using the island recipe for the Reissner–Nordström black hole behaves as the black hole mass decreases. A general answer to the question essentially depends not only on the character of the mass decrease but also on the charge decrease. We assume a specific relation between the charge and mass $Q^2=GM^2[1-(M/\mu)^{2\nu}]$, which we call the constraint equation. We discuss whether it is possible to have a constraint such that the entanglement entropy does not blow up at the end of evaporation, as happens in the case of thermodynamic entropy and the entanglement entropy for the Schwarzschild black hole. We show that for some special scaling parameters, the entanglement entropy of radiation does not blow up if the mass of the evaporating black hole exceeds the Planck mass.
Keywords: black holes, Hawking radiation, island formula.
Mots-clés : information paradox
@article{TMF_2022_212_3_a9,
     author = {I. Ya. Aref'eva and I. V. Volovich and T. A. Rusalev},
     title = {Entanglement entropy of a~near-extremal black hole},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {457--477},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
AU  - T. A. Rusalev
TI  - Entanglement entropy of a near-extremal black hole
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 457
EP  - 477
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/
LA  - ru
ID  - TMF_2022_212_3_a9
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%A T. A. Rusalev
%T Entanglement entropy of a near-extremal black hole
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 457-477
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/
%G ru
%F TMF_2022_212_3_a9
I. Ya. Aref'eva; I. V. Volovich; T. A. Rusalev. Entanglement entropy of a near-extremal black hole. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 457-477. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a9/

[1] S. W. Hawking, “Particle creation by black holes”, Comm. Math. Phys., 43:3 (1975), 199–220 | DOI | MR

[2] S. W. Hawking, “Breakdown of predictability in gravitational collapse”, Phys. Rev. D, 14:10 (1976), 2460–2473 | DOI | MR

[3] D. N. Page, “Information in black hole radiation”, Phys. Rev. Lett., 71:23 (1993), 3743–3746, arXiv: hep-th/9306083 | DOI | MR

[4] D. N. Page, “Time dependence of Hawking radiation entropy”, J. Cosmol. Astropart. Phys., 2013:09 (2013), 028, 27 pp., arXiv: 1301.4995 | DOI | MR

[5] G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox”, JHEP, 2020:09 (2020), 002, 83 pp., arXiv: 1905.08255 | DOI | MR

[6] A. Almheiri, N. Engelhardt, D. Marolf, H. Maxfield, “The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole”, JHEP, 2019:12 (2019), 063, 46 pp., arXiv: 1905.08762 | DOI | MR

[7] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, A. Tajdini, “The entropy of Hawking radiation”, Rev. Modern Phys., 93:3 (2021), 035002, 23 pp., arXiv: 2006.06872 | DOI | MR

[8] N. Engelhardt, A. C. Wall, “Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime”, JHEP, 2015:01 (2015), 073, 27 pp. | DOI

[9] S. Ryu, T. Takayanagi, “Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence”, Phys. Rev. Lett., 96:18 (2006), 181602, 4 pp., arXiv: hep-th/0603001 | DOI | MR

[10] V. E. Hubeny, M. Rangamani, T. Takayanagi, “A covariant holographic entanglement entropy proposal”, JHEP, 2007:07 (2007), 062, 64 pp., arXiv: 0705.0016 | DOI | MR

[11] A. Almheiri, R. Mahajan, J. E. Santos, “Entanglement islands in higher dimensions”, SciPost Phys., 9:1 (2020), 001, 18 pp., arXiv: 1911.09666 | DOI | MR

[12] C. Krishnan, V. Patil, J. Pereira, Page curve and the information paradox in flat space, arXiv: 2005.02993

[13] K. Hashimoto, N. Iizuka, Y. Matsuo, “Islands in Schwarzschild black holes”, JHEP, 2020:06 (2020), 085, 20 pp., arXiv: 2004.05863 | DOI | MR

[14] M. Alishahiha, A. Faraji Astaneh, A. Naseh, “Island in the presence of higher derivative terms”, JHEP, 2021:02 (2021), 035, 20 pp., arXiv: 2005.08715 | DOI | MR

[15] Y. Matsuo, “Islands and stretched horizon”, JHEP, 2021:07 (2021), 051, 29 pp., arXiv: 2011.08814 | DOI | MR

[16] X. Wang, R. Li, J. Wang, “Islands and Page curves of Reissner–Nordström black holes”, JHEP, 2021:04 (2021), 103, 19 pp., arXiv: 2101.06867 | DOI | MR

[17] W. Kim, M. Nam, “Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island”, Eur. Phys. J. C, 81:10 (2021), 869, 10 pp., arXiv: 2103.16163 | DOI

[18] I. Aref'eva, I. Volovich, A note on islands in Schwarzschild black holes, arXiv: 2110.04233

[19] G. W. Gibbons, “Vacuum polarization and the spontaneous loss of charge by black holes”, Comm. Math. Phys., 44:3 (1975), 245–264 | DOI | MR

[20] W. T. Zaumen, “Upper bound on the electric charge of a black hole”, Nature, 247:5442 (1974), 530–531 | DOI

[21] B. Carter, “Charge and particle conservation in black-hole decay”, Phys. Rev. Lett., 33:9 (1974), 558–561 | DOI

[22] T. Damour, R. Ruffini, “Quantum electrodynamical effects in Kerr–Newmann geometries”, Phys. Rev. Lett., 35:7 (1975), 463–466 | DOI

[23] D. N. Page, “Particle emission rates from a black hole. II. Massless particles from a rotating hole”, Phys. Rev. D, 14:12 (1976), 3260–3273 | DOI

[24] W. A. Hiscock, L. D. Weems, “Evolution of charged evaporating black holes”, Phys. Rev. D, 41:4 (1990), 1142–1151 | DOI | MR

[25] Cl. Gabriel, “Spontaneous loss of charge of the Reissner–Nordström black hole”, Phys. Rev. D, 63:2 (2000), 024010, 4 pp. | DOI | MR

[26] E. Sorkin, T. Piran, “Formation and evaporation of charged black holes”, Phys. Rev. D, 63:12 (2001), 124024, arXiv: gr-qc/0103090 | DOI | MR

[27] Y. C. Ong, “The attractor of evaporating Reissner–Nordström black holes”, Eur. Phys. J. Plus, 136 (2021), 61, arXiv: 1909.09981 | DOI

[28] I. Aref'eva, I. Volovich, Complete evaporation of black holes and Page curves, arXiv: 2202.00548

[29] P. Calabrese, J. Cardy, “Entanglement entropy and conformal field theory”, J. Phys. A, 42:50 (2009), 504005, 36 pp., arXiv: 0905.4013 | DOI | MR