Periodic Gibbs measures for the three-state SOS model on a Cayley tree with a translation-invariant external field
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 448-456 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a three-state solid-on-solid (SOS) model on a Cayley tree in the presence of an external field. We show that periodic Gibbs measures are either translation invariant or periodic with period two. We describe two-periodic Gibbs measures of the model.
Keywords: Cayley tree, Gibbs measure, SOS model, external field, periodic Gibbs measure.
@article{TMF_2022_212_3_a8,
     author = {O. Sh. Karshiboev},
     title = {Periodic {Gibbs} measures for the~three-state {SOS} model on {a~Cayley} tree with a~translation-invariant external field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--456},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a8/}
}
TY  - JOUR
AU  - O. Sh. Karshiboev
TI  - Periodic Gibbs measures for the three-state SOS model on a Cayley tree with a translation-invariant external field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 448
EP  - 456
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a8/
LA  - ru
ID  - TMF_2022_212_3_a8
ER  - 
%0 Journal Article
%A O. Sh. Karshiboev
%T Periodic Gibbs measures for the three-state SOS model on a Cayley tree with a translation-invariant external field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 448-456
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a8/
%G ru
%F TMF_2022_212_3_a8
O. Sh. Karshiboev. Periodic Gibbs measures for the three-state SOS model on a Cayley tree with a translation-invariant external field. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 448-456. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a8/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] U. A. Rozikov, M. M. Rakhmatullaev, R. M. Khakimov, “Periodicheskie mery Gibbsa dlya modeli Pottsa s translyatsionno-invariantnym i periodicheskim vneshnimi polyami na dereve Keli”, TMF, 210:1 (2022), 156–176 | DOI | DOI

[3] U. A. Rozikov, Yu. M. Suhov, “Gibbs measures for SOS models on a Cayley tree”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9:3 (2006), 471–488 | DOI | MR

[4] U. A. Rozikov, Sh. A. Shoyusupov, “Mery Gibbsa dlya modeli SOS s chetyrmya sostoyaniyami na dereve Keli”, TMF, 149:1 (2006), 18–31 | DOI | DOI | MR | Zbl

[5] U. A. Rozikov, “On $q$-component models on Cayley tree: contour method”, Lett. Math. Phys., 71:1 (2005), 27–38 | DOI | MR

[6] R. M. Khakimov, “Lokalizatsiya translyatsionno-invariantnykh mer Gibbsa dlya modelei Pottsa i “solid-on-solid” na dereve Keli”, TMF, 179:1 (2014), 24–35 | DOI | DOI | MR | Zbl

[7] M. M. Rahmatullaev, M. R. Abdusalomova, M. A. Rasulova, “Ground states for the SOS model with an external field on the Cayley tree”, Uzbek Math. J., 2020, no. 2, 145–156 | DOI | MR

[8] M. M. Rahmatullaev, B. U. Abraev, “Non-translation-invariant Gibbs measures of an SOS model on a Cayley tree”, Rep. Math. Phys., 86:3 (2020), 315–324 | DOI | MR

[9] B. U. Abraev, “O slabo periodicheskikh osnovnykh sostoyaniyakh dlya modeli SOS”, Nauch. vestn. NamGU, 2:3 (2020), 14–21

[10] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[11] H. Saygili, “Gibbs measures for the Potts–SOS model with three states of spin values”, Asian J. Current Res., 1:3 (2016), 114–121

[12] M. A. Rasulova, “O periodicheskikh merakh Gibbsa dlya modeli Pottsa–SOS na dereve Keli”, TMF, 199:1 (2019), 134–141 | DOI | DOI | MR

[13] M. M. Rahmatullaev, M. A. Rasulova, “Extremality of translation-invariant Gibbs measures for the Potts–SOS model on the Cayley tree”, J. Stat. Mech., 2021:7 (2021), 073201, 19 pp. | DOI | MR

[14] M. M. Rahmatullaev, O. Sh. Karshiboev, “Translation-invariant Gibbs measures for the SOS model with external field on a Cayley tree”, Dokl. AN RUz, 2021, no. 5, 3–6