Mots-clés : configuration
@article{TMF_2022_212_3_a7,
author = {R. M. Khakimov and M. T. Makhammadaliev},
title = {Nonprobability {Gibbs} measures for {the~HC} model with a~countable set of spin values for a~{\textquotedblleft}wand{\textquotedblright}-type graph on {a~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {429--447},
year = {2022},
volume = {212},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/}
}
TY - JOUR AU - R. M. Khakimov AU - M. T. Makhammadaliev TI - Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 429 EP - 447 VL - 212 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/ LA - ru ID - TMF_2022_212_3_a7 ER -
%0 Journal Article %A R. M. Khakimov %A M. T. Makhammadaliev %T Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 429-447 %V 212 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/ %G ru %F TMF_2022_212_3_a7
R. M. Khakimov; M. T. Makhammadaliev. Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 429-447. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/
[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl
[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 1974 | MR
[3] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl
[4] L. V. Bogachev, U. A. Rozikov, “On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field”, J. Stat. Mech. Theory Exp., 2019:7 (2019), 073205, 76 pp. | DOI | MR
[5] Y. K. Eshkabilov, F. H. Haydarov, U. A. Rozikov, “Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree”, J. Stat. Phys., 147:4 (2012), 779–794, arXiv: 1202.2542 | DOI | MR
[6] S. Friedli, Y. Velenik, Statistical Mechanics of Lattice Systems. A Concrete Mathematical Introduction, Cambridge Univ. Press, Cambridge, 2018 | MR
[7] F. Henning, C. Külske, A. Le Ny, U. A. Rozikov, “Gradient Gibbs measures for the SOS model with countable values on a Cayley tree”, Electron. J. Probab., 24 (2019), 106, 23 pp. | DOI | MR
[8] N. N. Ganikhodjaev, U. A. Rozikov, “The Potts model with countable set of spin values on a Cayley tree”, Lett. Math. Phys., 75:2 (2006), 99–109 | DOI | MR
[9] N. N. Ganikhodjaev, “Limiting Gibbs measures of Potts model with countable set of spin values”, J. Math. Anal. Appl., 336:1 (2007), 693–703 | DOI | MR
[10] Z. Ye, “Models of gradient type with sub-quadratic actions”, J. Math. Phys., 60:7 (2019), 073304, 26 pp. | DOI | MR
[11] F. Henning, C. Külske, “Coexistence of localized Gibbs measures and delocalized gradient Gibbs measures on trees”, Ann. Appl. Probab., 31:5 (2021), 2284–2310 | DOI | MR
[12] S. Buchholz, “Phase transitions for a class of gradient fields”, Probab. Theory Related Fields, 179:3–4 (2021), 969–1022 | DOI | MR
[13] F. Henning, Gibbs measures and gradient Gibbs measures on regular trees, PhD thesis, Ruhr-Universität, Bochum, 2021
[14] C. Külske, P. Schriever, “Gradient Gibbs measures and fuzzy transformations on trees”, Markov Process. Relat. Fields, 23:4 (2017), 553–590 | MR
[15] F. Henning, C. Külske, Existence of gradient Gibbs measures on regular trees which are not translation invariant, arXiv: 2102.11899
[16] G. R. Brightwell, O. Häggström, P. Winkler, “Non monotonic behavior in hard-core and Widom–Rowlinson models”, J. Statist. Phys., 94:3–4 (1999), 415–435 | DOI | MR
[17] F. P. Kelly, “Stochastic models of computer communication systems”, J. Roy. Statist. Soc. B, 47:3 (1985), 379–395 | MR
[18] A. E. Mazel', Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR
[19] R. M. Khakimov, M. T. Makhammadaliev, “Usloviya edinstvennosti i needinstvennosti slabo periodicheskikh mer Gibbsa dlya modeli ‘hard core’ ”, TMF, 204:2 (2020), 258–279 | DOI | DOI
[20] G. R. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theor. Ser. B, 77:2 (1999), 221–262 | DOI | MR
[21] N. Ganikhodjaev, F. Mukhamedov, J. F. F. Mendes, “On the three state Potts model with competing interactions on the Bethe lattice”, J. Stat. Mech., 2006:8 (2006), P08012, 29 pp. | DOI