Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 429-447
Voir la notice de l'article provenant de la source Math-Net.Ru
We study Gibbs measures for the HC model with a countable set $\mathbb Z$ of spin values and a countable set of parameters (i.e., with the activity function $\lambda_i>0$, $i\in \mathbb Z$) in the case of a “wand”-type graph. In this case, analyzing a functional equation that ensures the consistency condition for finite-dimensional Gibbs measures, we obtain the following results. Exact values of the parameter $\lambda_{\mathrm{cr}}$ are determined; it is shown that for $0\lambda\leq\lambda_{\mathrm{cr}}$, there exists exactly one translation-invariant nonprobabilistic Gibbs measure, and for $\lambda>\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$, $3$, or $4$. We obtain the uniqueness conditions for $2$-periodic nonprobabilistic Gibbs measures on a Cayley tree of an arbitrary order, as well as exact values of the parameter $\lambda_{\mathrm{cr}}$; we also show that for $\lambda\geq\lambda_{\mathrm{cr}}$, there exists precisely one such a measure, and for $0\lambda\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$ or $3$.
Keywords:
HC model, Cayley tree, Gibbs measure, nonprobabilistic Gibbs measure, boundary law.
Mots-clés : configuration
Mots-clés : configuration
@article{TMF_2022_212_3_a7,
author = {R. M. Khakimov and M. T. Makhammadaliev},
title = {Nonprobability {Gibbs} measures for {the~HC} model with a~countable set of spin values for a~``wand''-type graph on {a~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {429--447},
publisher = {mathdoc},
volume = {212},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/}
}
TY - JOUR AU - R. M. Khakimov AU - M. T. Makhammadaliev TI - Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 429 EP - 447 VL - 212 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/ LA - ru ID - TMF_2022_212_3_a7 ER -
%0 Journal Article %A R. M. Khakimov %A M. T. Makhammadaliev %T Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 429-447 %V 212 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/ %G ru %F TMF_2022_212_3_a7
R. M. Khakimov; M. T. Makhammadaliev. Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 429-447. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/