Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 429-447

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Gibbs measures for the HC model with a countable set $\mathbb Z$ of spin values and a countable set of parameters (i.e., with the activity function $\lambda_i>0$, $i\in \mathbb Z$) in the case of a “wand”-type graph. In this case, analyzing a functional equation that ensures the consistency condition for finite-dimensional Gibbs measures, we obtain the following results. Exact values of the parameter $\lambda_{\mathrm{cr}}$ are determined; it is shown that for $0\lambda\leq\lambda_{\mathrm{cr}}$, there exists exactly one translation-invariant nonprobabilistic Gibbs measure, and for $\lambda>\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$$3$, or $4$. We obtain the uniqueness conditions for $2$-periodic nonprobabilistic Gibbs measures on a Cayley tree of an arbitrary order, as well as exact values of the parameter $\lambda_{\mathrm{cr}}$; we also show that for $\lambda\geq\lambda_{\mathrm{cr}}$, there exists precisely one such a measure, and for $0\lambda\lambda_{\mathrm{cr}}$, there exist precisely three such measures on a Cayley tree of order $2$ or $3$.
Keywords: HC model, Cayley tree, Gibbs measure, nonprobabilistic Gibbs measure, boundary law.
Mots-clés : configuration
@article{TMF_2022_212_3_a7,
     author = {R. M. Khakimov and M. T. Makhammadaliev},
     title = {Nonprobability {Gibbs} measures for {the~HC} model with a~countable set of spin values for a~``wand''-type graph on {a~Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {429--447},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/}
}
TY  - JOUR
AU  - R. M. Khakimov
AU  - M. T. Makhammadaliev
TI  - Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 429
EP  - 447
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/
LA  - ru
ID  - TMF_2022_212_3_a7
ER  - 
%0 Journal Article
%A R. M. Khakimov
%A M. T. Makhammadaliev
%T Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 429-447
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/
%G ru
%F TMF_2022_212_3_a7
R. M. Khakimov; M. T. Makhammadaliev. Nonprobability Gibbs measures for the~HC model with a~countable set of spin values for a~``wand''-type graph on a~Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 429-447. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a7/