Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 414-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study bound states in an s-wave superconducting strip on the surface of a topological superconductor with the perpendicular Zeeman field. We prove analytically that an arbitrarily small local perturbation of the Zeeman field generates Andreev bound states with energies near the superconducting gap edges, while the (nonmagnetic) impurity potential does not produce such an effect. Rather large perturbations of the Zeeman field can lead to the appearance of Andreev bound states with energies near zero. We analytically find wave functions of the Andreev bound states under consideration. In contrast to the one-dimensional case, the wave functions do not satisfy the conjugation conditions that are characteristic of Majorana states because of the influence of neighboring subbands.
Keywords: topological insulator, superconducting gap, Andreev bound state, subband, Zeeman field.
@article{TMF_2022_212_3_a6,
     author = {Yu. P. Chuburin and T. S. Tinyukova},
     title = {Andreev states in a~quasi-one-dimensional superconductor on the~surface of a~topological insulator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {414--428},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
AU  - T. S. Tinyukova
TI  - Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 414
EP  - 428
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/
LA  - ru
ID  - TMF_2022_212_3_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%A T. S. Tinyukova
%T Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 414-428
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/
%G ru
%F TMF_2022_212_3_a6
Yu. P. Chuburin; T. S. Tinyukova. Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 414-428. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/

[1] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501, 36 pp. | DOI

[2] F. von Oppen, Y. Peng, F. Pientka, “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School (École de Physique des Houches, Session CIII, 4–29 August, 2014), eds. C. Chamon, M. O. Goerbig, R. Moessner, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2017, 389–449

[3] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp. | DOI

[4] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 29 pp. | DOI

[5] T. D. Stanescu, S. Tewari, “Robust low-energy Andreev bound states in semiconductor-superconductor structures: Importance of partial separation of component Majorana bound states”, Phys. Rev. B, 100:5 (2019), 155429, 21 pp., arXiv: 1811.02557 | DOI

[6] C. Moore, C. Zeng, T. D. Stanescu, S. Tewari, “Quantized zero bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes”, Phys. Rev. B, 98 (2018), 155314, 6 pp., arXiv: 1804.03164 | DOI

[7] J. Cayao, A. M. Black-Schaffer, “Distinguishing trivial and topological zero-energy states in long nanowire junctions”, Phys. Rev. B, 104:2 (2021), L020501, 6 pp. | DOI

[8] B. D. Woods, S. Das Sarma, T. D. Stanescu, “Subband occupation in semiconductor-superconductor nanowires”, Phys. Rev. B, 101:4 (2020), 045405, 13 pp., arXiv: 1910.04362 | DOI

[9] Yu. P. Chuburin, T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge”, Phys. Lett. A, 384:27 (2020), 126694, 7 pp. | DOI | MR

[10] B. D. Woods, J. Chen, S. M. Frolov, T. D. Stanescu, “Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires”, Phys. Rev. B, 100:12 (2019), 125407, 17 pp., arXiv: 1902.02772 | DOI

[11] Z. Hou, J. Klinovaja, Zero-energy Andreev bound states in iron-based superconductor Fe(Te,Se), arXiv: 2109.08200

[12] Yu. P. Chuburin, T. S. Tinyukova, “Vzaimodeistvie mezhdu podzonami v kvaziodnomernom sverkhprovodnike”, TMF, 210:3 (2022), 455–469 | DOI | DOI

[13] T. D. Stanescu, J. D. Sau, R. M. Lutchyn, S. Das Sarma, “Proximity effect at the superconductor-topological insulator interface”, Phys. Rev. B, 81:24 (2010), 241310, 4 pp., arXiv: 1002.0842 | DOI

[14] J. Linder, Yu. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator”, Phys. Rev. B, 81:18 (2010), 184525, 11 pp. | DOI

[15] C. T. Olund, E. Zhao, “Current-phase relation for Josephson effect through helical metal”, Phys. Rev. B, 86:21 (2012), 214515, 7 pp. | DOI

[16] F. Crepin, B. Trauzettel, F. Dolcini, “Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids”, Phys. Rev. B, 89:20 (2014), 205115, 12 pp. | DOI

[17] A. C. Potter, P. A. Lee, “Multichannel generalization of Kitaev's Majorana end states and a practical route to realize them in thin films”, Phys. Rev. Lett., 105:22 (2010), 227003, 4 pp., arXiv: 1007.4569 | DOI

[18] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1985

[19] P. Szumniak, D. Chevallier, D. Loss, J. Klinovaja, “Spin and charge signatures of topological superconductivity in Rashba nanowires”, Phys. Rev. B, 96:4 (2017), 041401, 5 pp. | DOI

[20] M. Serina, D. Loss, J. Klinovaja, “Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires”, Phys. Rev. B, 98:3 (2018), 035419, 10 pp. | DOI

[21] Yu. P. Chuburin, T. S. Tinyukova, “Povedenie andreevskikh sostoyanii pri topologicheskom fazovom perekhode”, TMF, 208:1 (2021), 145–162 | DOI | DOI | MR