@article{TMF_2022_212_3_a6,
author = {Yu. P. Chuburin and T. S. Tinyukova},
title = {Andreev states in a~quasi-one-dimensional superconductor on the~surface of a~topological insulator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {414--428},
year = {2022},
volume = {212},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/}
}
TY - JOUR AU - Yu. P. Chuburin AU - T. S. Tinyukova TI - Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 414 EP - 428 VL - 212 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/ LA - ru ID - TMF_2022_212_3_a6 ER -
%0 Journal Article %A Yu. P. Chuburin %A T. S. Tinyukova %T Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 414-428 %V 212 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/ %G ru %F TMF_2022_212_3_a6
Yu. P. Chuburin; T. S. Tinyukova. Andreev states in a quasi-one-dimensional superconductor on the surface of a topological insulator. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 414-428. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a6/
[1] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501, 36 pp. | DOI
[2] F. von Oppen, Y. Peng, F. Pientka, “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics: Lecture Notes of the Les Houches Summer School (École de Physique des Houches, Session CIII, 4–29 August, 2014), eds. C. Chamon, M. O. Goerbig, R. Moessner, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2017, 389–449
[3] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp. | DOI
[4] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 29 pp. | DOI
[5] T. D. Stanescu, S. Tewari, “Robust low-energy Andreev bound states in semiconductor-superconductor structures: Importance of partial separation of component Majorana bound states”, Phys. Rev. B, 100:5 (2019), 155429, 21 pp., arXiv: 1811.02557 | DOI
[6] C. Moore, C. Zeng, T. D. Stanescu, S. Tewari, “Quantized zero bias conductance plateau in semiconductor-superconductor heterostructures without non-Abelian Majorana zero modes”, Phys. Rev. B, 98 (2018), 155314, 6 pp., arXiv: 1804.03164 | DOI
[7] J. Cayao, A. M. Black-Schaffer, “Distinguishing trivial and topological zero-energy states in long nanowire junctions”, Phys. Rev. B, 104:2 (2021), L020501, 6 pp. | DOI
[8] B. D. Woods, S. Das Sarma, T. D. Stanescu, “Subband occupation in semiconductor-superconductor nanowires”, Phys. Rev. B, 101:4 (2020), 045405, 13 pp., arXiv: 1910.04362 | DOI
[9] Yu. P. Chuburin, T. S. Tinyukova, “The emergence of bound states in a superconducting gap at the topological insulator edge”, Phys. Lett. A, 384:27 (2020), 126694, 7 pp. | DOI | MR
[10] B. D. Woods, J. Chen, S. M. Frolov, T. D. Stanescu, “Zero-energy pinning of topologically trivial bound states in multiband semiconductor-superconductor nanowires”, Phys. Rev. B, 100:12 (2019), 125407, 17 pp., arXiv: 1902.02772 | DOI
[11] Z. Hou, J. Klinovaja, Zero-energy Andreev bound states in iron-based superconductor Fe(Te,Se), arXiv: 2109.08200
[12] Yu. P. Chuburin, T. S. Tinyukova, “Vzaimodeistvie mezhdu podzonami v kvaziodnomernom sverkhprovodnike”, TMF, 210:3 (2022), 455–469 | DOI | DOI
[13] T. D. Stanescu, J. D. Sau, R. M. Lutchyn, S. Das Sarma, “Proximity effect at the superconductor-topological insulator interface”, Phys. Rev. B, 81:24 (2010), 241310, 4 pp., arXiv: 1002.0842 | DOI
[14] J. Linder, Yu. Tanaka, T. Yokoyama, A. Sudbo, N. Nagaosa, “Interplay between superconductivity and ferromagnetism on a topological insulator”, Phys. Rev. B, 81:18 (2010), 184525, 11 pp. | DOI
[15] C. T. Olund, E. Zhao, “Current-phase relation for Josephson effect through helical metal”, Phys. Rev. B, 86:21 (2012), 214515, 7 pp. | DOI
[16] F. Crepin, B. Trauzettel, F. Dolcini, “Signatures of Majorana bound states in transport properties of hybrid structures based on helical liquids”, Phys. Rev. B, 89:20 (2014), 205115, 12 pp. | DOI
[17] A. C. Potter, P. A. Lee, “Multichannel generalization of Kitaev's Majorana end states and a practical route to realize them in thin films”, Phys. Rev. Lett., 105:22 (2010), 227003, 4 pp., arXiv: 1007.4569 | DOI
[18] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1985
[19] P. Szumniak, D. Chevallier, D. Loss, J. Klinovaja, “Spin and charge signatures of topological superconductivity in Rashba nanowires”, Phys. Rev. B, 96:4 (2017), 041401, 5 pp. | DOI
[20] M. Serina, D. Loss, J. Klinovaja, “Boundary spin polarization as a robust signature of a topological phase transition in Majorana nanowires”, Phys. Rev. B, 98:3 (2018), 035419, 10 pp. | DOI
[21] Yu. P. Chuburin, T. S. Tinyukova, “Povedenie andreevskikh sostoyanii pri topologicheskom fazovom perekhode”, TMF, 208:1 (2021), 145–162 | DOI | DOI | MR