Superpositions of coherent states determined by Gauss sums
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 403-413

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a family of quantum states of the Schrödinger cat type as superpositions of the harmonic oscillator coherent states with coefficients defined by the quadratic Gauss sums. These states emerge as eigenfunctions of the lowering operators obtained after canonical transformations of the Heisenberg–Weyl algebra associated with the ordinary and fractional Fourier transformations. The first member of this family is given by the well known Yurke–Stoler coherent state.
Keywords: coherent states, harmonic oscillator
Mots-clés : Gauss sums, Fourier transformation.
@article{TMF_2022_212_3_a5,
     author = {V. P. Spiridonov},
     title = {Superpositions of coherent states determined by {Gauss} sums},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--413},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Superpositions of coherent states determined by Gauss sums
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 403
EP  - 413
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/
LA  - ru
ID  - TMF_2022_212_3_a5
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Superpositions of coherent states determined by Gauss sums
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 403-413
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/
%G ru
%F TMF_2022_212_3_a5
V. P. Spiridonov. Superpositions of coherent states determined by Gauss sums. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 403-413. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/