Superpositions of coherent states determined by Gauss sums
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 403-413 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe a family of quantum states of the Schrödinger cat type as superpositions of the harmonic oscillator coherent states with coefficients defined by the quadratic Gauss sums. These states emerge as eigenfunctions of the lowering operators obtained after canonical transformations of the Heisenberg–Weyl algebra associated with the ordinary and fractional Fourier transformations. The first member of this family is given by the well known Yurke–Stoler coherent state.
Keywords: coherent states, harmonic oscillator
Mots-clés : Gauss sums, Fourier transformation.
@article{TMF_2022_212_3_a5,
     author = {V. P. Spiridonov},
     title = {Superpositions of coherent states determined by {Gauss} sums},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--413},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/}
}
TY  - JOUR
AU  - V. P. Spiridonov
TI  - Superpositions of coherent states determined by Gauss sums
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 403
EP  - 413
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/
LA  - ru
ID  - TMF_2022_212_3_a5
ER  - 
%0 Journal Article
%A V. P. Spiridonov
%T Superpositions of coherent states determined by Gauss sums
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 403-413
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/
%G ru
%F TMF_2022_212_3_a5
V. P. Spiridonov. Superpositions of coherent states determined by Gauss sums. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 403-413. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a5/

[1] E. Schrödinger, “Der stetige Übergang von der Mikro- zur Makromechanik”, Die Naturwissenschaften, 14:28 (1926), 664–666 | DOI

[2] C. C. Gerry, P. L. Knight, Introductory Quantum Optics, Cambridge Univ. Press, Cambridge, 2005 | DOI

[3] E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik”, Naturwissenschaften, 23:48 (1935), 807–812 | DOI

[4] B. Yurke, D. Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion”, Phys. Rev. Lett., 57:1 (1986), 13–16 | DOI

[5] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi Sums, John Wiley and Sons, New York, 1998 | MR

[6] M. V. Berry, S. Klein, “Integer, fractional and fractal Talbot effects”, J. Modern Optics, 43:10 (1996), 2139–2164 | DOI | MR

[7] C. R. Fernández-Pousa, “On the structure of quadratic Gauss sums in the Talbot effect”, J. Opt. Soc. Am. A, 34:5 (2017), 732–742 | DOI

[8] M. Mehring, K. Müller, I. Sh. Averbukh, W. Merkel, W. P. Schleich, “NMR experiment factors numbers with Gauss sums”, Phys. Rev. Lett., 98:12 (2007), 120502, 4 pp., arXiv: quant-ph/0609174 | DOI

[9] V. Spiridonov, A. Zhedanov, “Zeros and orthogonality of the Askey–Wilson polynomials for $q$ a root of unity”, Duke Math. J., 89:2 (1997), 283–305, arXiv: q-alg/9605034 | DOI | MR

[10] V. Spiridonov, “Universal superpositions of coherent states and self-similar potentials”, Phys. Rev. A, 52:3 (1995), 1909–1935, arXiv: quant-ph/9601030 | DOI

[11] V. V. Dodonov, I. A. Malkin, V. I. Man'ko, “Even and odd coherent states and excitations of a singular oscillator”, Physica, 72:3 (1974), 597–618 | DOI | MR

[12] W. H. Zurek, “Sub-Planck structure in phase space and its relevance for quantum decoherence”, Nature, 412:6848 (2001), 712–717 | DOI

[13] R. J. Marks II, Handbook of Fourier Analysis and Its Applications, Oxford University Press, Oxford, 2009 | MR

[14] V. P. Spiridonov, “Avtomodelnye potentsialy v kvantovoi mekhanike i kogerentnye sostoyaniya”, EChAYa, 52:2 (2021), 530–561, arXiv: 2009.02360 | DOI

[15] Arman, G. Tyagi, P. K. Panigrahi, “Photon added cat state: phase space structure and statistics”, Optics Lett., 46:5 (2021), 1177–1180, arXiv: 2011.00990 | DOI

[16] A. C. McBride, F. H. Kerr, “On Namias's fractional Fourier transforms”, IMA J. Appl. Math., 39:2 (1987), 159–175 | DOI | MR

[17] U. M. Titulaer, R. J. Glauber, “Density operators for coherent fields”, Phys. Rev., 145:4 (1966), 1041–1050 | DOI

[18] R. Tanaś, “Nonclassical states of light propagating in Kerr media”, Theory of Nonclassical States of Light, eds. V. V. Dodonov, V. I. Man'ko, Francis and Taylor, London, 2003, 277–318 | DOI

[19] A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, Ph. Grangier, “Generating optical Schrödinger kittens for quantum information processing”, Science, 312:5770 (2006), 83–86 | DOI

[20] K. Chandrasekharan, Introduction to Analytic Number Theory, Die Grundlehren der mathematischen Wissenschaften, 148, Springer, New York, 1968 | MR | Zbl

[21] U. Roy, S. Ghosh, P. K. Panigrahi, D. Vitali, “Sub-Planck-scale structures in the Pöschl–Teller potential and their sensitivity to perturbations”, Phys. Rev. A, 80:5 (2009), 052115, 8 pp., arXiv: 0904.0488 | DOI

[22] Z. Bialynicka-Birula, “Properties of the generalized coherent state”, Phys. Rev., 173:5 (1968), 1207–1209 | DOI

[23] D. Stoler, “Generalized coherent states”, Phys. Rev. D, 4:8 (1971), 2309–2312 | DOI

[24] Ts. Gantsog, R. Tanaś, “Discrete superpositions of coherent states and phase properties of elliptically polarized light propagating in a Kerr medium”, Quantum Opt., 3:1 (1991), 33–48 | DOI

[25] K. Tara, G. S. Agarwal, S. Chaturvedi, “Production of Schrödinger macroscopic quantum-superposition states in a Kerr medium”, Phys. Rev. A, 47:6 (1993), 5024–5029 | DOI