Riemann–Hilbert approach and $N$-soliton solutions of the two-component Kundu–Eckhaus equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 386-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the two-component Kundu–Eckhaus equation with a zero boundary condition at infinity. Based on the spectral analysis of the Lax pair, a Riemann–Hilbert problem is established. An $N$-soliton solution is then obtained by solving the regular and nonregular Riemann–Hilbert problems.
Mots-clés : $N$-soliton solution, Lax pair
Keywords: two-component Kundu–Eckhaus equation, Riemann–Hilbert approach, spectral analysis.
@article{TMF_2022_212_3_a4,
     author = {Chunjiang Wang and Jian Zhang},
     title = {Riemann{\textendash}Hilbert approach and $N$-soliton solutions of the~two-component {Kundu{\textendash}Eckhaus} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {386--402},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a4/}
}
TY  - JOUR
AU  - Chunjiang Wang
AU  - Jian Zhang
TI  - Riemann–Hilbert approach and $N$-soliton solutions of the two-component Kundu–Eckhaus equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 386
EP  - 402
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a4/
LA  - ru
ID  - TMF_2022_212_3_a4
ER  - 
%0 Journal Article
%A Chunjiang Wang
%A Jian Zhang
%T Riemann–Hilbert approach and $N$-soliton solutions of the two-component Kundu–Eckhaus equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 386-402
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a4/
%G ru
%F TMF_2022_212_3_a4
Chunjiang Wang; Jian Zhang. Riemann–Hilbert approach and $N$-soliton solutions of the two-component Kundu–Eckhaus equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 386-402. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a4/

[1] X.-G. Geng, H.-W. Tam, “Darboux transformation and soliton solutions for generalized nonlinear Schrödinger equations”, J. Phys. Soc. Japan, 68:5 (1999), 1508–1512 | DOI | MR

[2] X.-G. Geng, “A hierarchy of non-linear evolution equations its Hamiltonian structure and classical integrable system”, Phys. A, 180:1–2 (1992), 241–251 | DOI | MR

[3] Y. Kodama, “Optical solitons in a monomode fiber”, J. Statist. Phys., 39:5–6 (1985), 597–614 | DOI | MR

[4] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[5] G. Tu, “Liouville integrability of zero curvature equations”, Nonlinear Physics, Proceedings of the International Conference (Shanghai, China, April 24 – 30, 1989), Research Reports in Physics, eds. C. Gu, Y. Li, G. Tu, Springer, Berlin, 1990, 2–11 | MR

[6] D.-S. Wang, X. Wang, “Long-time asymptotics and the bright $N$-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach”, Nonlinear Anal. Real World Appl., 41 (2018), 334–361 | DOI | MR

[7] L.-L. Wen, E.-G. Fan, “The Riemann–Hilbert approach to focusing Kundu–Eckhaus equation with non-zero boundary conditions”, Modern Phys. Lett. B, 34:30 (2020), 2050332, 20 pp. | DOI | MR

[8] C.-H. Gu, H.-S. Hu, Z.-X. Zhou, Darboux Transformations in Integrable Systems. Theory and their Applications to Geometry, Mathematical Physics Studies, 26, Springer, New York, 2005 | DOI | MR

[9] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, Berlin, 1991 | DOI | MR

[10] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134

[11] K. Kawata, “Riemann spectral mathod for the nonlinear evolution equation”, Advances in Nonlinear Waves, v. 1, ed. L. Debnath, Pitman, Boston, MA, 1984, 210–225 | MR

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[13] J.-P. Wu, X.-G. Geng, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Commun. Nonlinear Sci. Numer. Simul., 53 (2017), 83–93 | DOI | MR

[14] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR

[15] J. K. Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, Mathematical Modeling and Computation, 16, SIAM, Philadelphia, PA, 2010 | MR

[16] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR

[17] L.-L. Wen, N. Zhang, E.-G. Fan, “$N$-soliton solution of the Kundu-type equation via Riemann–Hilbert approach”, Acta Math. Sci., 40:1 (2020), 113–126 | DOI | MR