Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 374-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the defocusing modified complex short-pulse equation. The Darboux transformation for this equation is constructed with the help of the reciprocal transformation and the associated defocusing modified complex short-pulse equation. As an application, the multi-dark-soliton solutions of the defocusing modified complex short-pulse equation are presented in determinant form.
Keywords: defocusing complex modified short-pulse equation, reciprocal transformation, multi-dark-soliton solution.
Mots-clés : Darboux transformation
@article{TMF_2022_212_3_a3,
     author = {Hui Mao and Chunjing Mo and Weicai Pang},
     title = {Darboux transformation for the~defocusing modified complex short-pulse equation and its multi-dark-soliton solutions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {374--385},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a3/}
}
TY  - JOUR
AU  - Hui Mao
AU  - Chunjing Mo
AU  - Weicai Pang
TI  - Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 374
EP  - 385
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a3/
LA  - ru
ID  - TMF_2022_212_3_a3
ER  - 
%0 Journal Article
%A Hui Mao
%A Chunjing Mo
%A Weicai Pang
%T Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 374-385
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a3/
%G ru
%F TMF_2022_212_3_a3
Hui Mao; Chunjing Mo; Weicai Pang. Darboux transformation for the defocusing modified complex short-pulse equation and its multi-dark-soliton solutions. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 374-385. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a3/

[1] Y. Matsuno, “Integrable multi-component generalization of a modified short pulse equation”, J. Math. Phys., 57:11 (2016), 111507, 23 pp., arXiv: 1607.01079 | DOI | MR

[2] S. Shen, B.-F. Feng, Y. Ohta, “A modified complex short pulse equation of defocusing type”, J. Nonlinear Math. Phys., 24:2 (2017), 195–209 | DOI | MR

[3] C. Lv, Q. P. Liu, “Solving the modified complex short pulse equation of focusing type: a Riemann–Hilbert approach”, Anal. Math. Phys., 12:1 (2022), 27, 18 pp. | DOI | MR

[4] X. Zhou, E. Fan, “Riemann–Hilbert problems and soliton solutions for the complex modified short pulse equation”, Rep. Math. Phys., 88:2 (2021), 145–159 | DOI | MR

[5] D. Zhao, Zhaqilao, “On two new types of modified short pulse equation”, Nonlinear Dyn., 100:1 (2020), 615–627 | DOI

[6] B.-F. Feng, L. Ling, Z. Zhu, “Defocusing complex short-pulse equation and its multi-dark-soliton solution”, Phys. Rev. E, 93:5 (2016), 052227, 8 pp., arXiv: 1511.00945 | DOI | MR

[7] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | MR