Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 354-373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We theoretically calculate general higher-order soliton solutions of the space-shifted parity–time-symmetric nonlocal multicomponent nonlinear Schrödinger equation via a Darboux dressing transformation with an asymptotic expansion method. A family of solutions is presented in separating variables. In particular, the obtained solutions contain rich dynamical patterns, most of which have no counterparts in the corresponding local nonlinear Schrödinger equation. These results may contribute to explaining and enriching the corresponding nonlinear wave phenomena emerging in nonlocal wave modes.
Keywords: integrable shifted nonlocal multicomponent nonlinear Schrödinger equation, Darboux dressing transformation
Mots-clés : solitons.
@article{TMF_2022_212_3_a2,
     author = {Xiu-Bin Wang and Sh.-F. Tian},
     title = {Exotic localized waves in the~shifted nonlocal multicomponent nonlinear {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {354--373},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/}
}
TY  - JOUR
AU  - Xiu-Bin Wang
AU  - Sh.-F. Tian
TI  - Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 354
EP  - 373
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/
LA  - ru
ID  - TMF_2022_212_3_a2
ER  - 
%0 Journal Article
%A Xiu-Bin Wang
%A Sh.-F. Tian
%T Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 354-373
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/
%G ru
%F TMF_2022_212_3_a2
Xiu-Bin Wang; Sh.-F. Tian. Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 354-373. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/

[1] V. E. Zakharov, “Stabilnost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, Zhurn. prikl. mekh. i tekhn. fiz., 9:2 (1968), 86–94 | DOI

[2] G. P. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996

[3] A. Hasegawa, Y. Kodama, Solitons in Optical Communication, Clarendon Press, Oxford, 1995

[4] N. N. Akhmediev, A. Ankevich, Solitony. Nelineinye impulsy i puchki, Fizmatlit, M., 2003

[5] L. P. Pitaevskii, S. Stringari, Bose–Einstein Condensation, International Series of Monographs on Physics, 116, Oxford University Press, Oxford, 2003 | MR

[6] Z.-Y. Yan, “Financial rogue waves”, Commun. Theor. Phys., 54:5 (2010), 947–949, arXiv: 0911.4259 | DOI

[7] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self Focusing and Wave Collapse, Applied Mathematical Sciences, 139, Springer, New York, 1999 | DOI | MR

[8] G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Applied Mathematical Sciences, 192, Springer, Cham, 2015 | DOI | MR

[9] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[10] M. J. Ablowitz, P. A. Clarkson, “Solitons, Nonlinear Evolution Equations and Inverse Scattering”, Mathematical Societe Lecture Notes Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR

[11] V. B. Matveev, M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991 | MR

[12] X.-B. Wang, S.-F. Tian, T.-T. Zhang, “Characteristics of the breather and rogue waves in a $(2+1)$-dimensional nonlinear Schrödinger equation”, Proc. Amer. Math. Soc., 146:8 (2018), 3353–3365 | DOI | MR

[13] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR

[14] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation”, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI

[15] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp., arXiv: 1108.2867 | DOI

[16] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR

[17] D. Qiu, J. He, Y. Zhang, K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation”, Proc. R. Soc. A, 471:2180 (2015), 20150236, 20 pp. | DOI | MR

[18] U. Bandelow, N. Akhmediev, “Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa–Satsuma case”, Phys. Lett. A, 376:18 (2012), 1558–1561 | DOI

[19] S. Chen, “Twisted rogue-wave pairs in the Sasa–Satsuma equation”, Phys. Rev. E, 88:2 (2013), 023202, 5 pp. | DOI

[20] G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, “Intricate dynamics of rogue waves governed by the Sasa–Satsuma equation”, Phys. D, 402 (2020), 132252, 7 pp. | DOI | MR

[21] F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves”, Phys. Rev. Lett., 109:4 (2012), 044102, 4 pp., arXiv: 1204.1449 | DOI

[22] X.-B. Wang, B. Han, “Vector nonlinear waves in a two-component Bose–Einstein condensate system”, J. Phys. Soc. Japan, 89:12 (2020), 124003, 10 pp. | DOI

[23] X.-B. Wang, B. Han, “The three-component coupled nonlinear Schrödinger equation: Rogue waves on a multi-soliton background and dynamics”, Europhys. Lett., 126:1 (2018), 15001, 6 pp. | DOI

[24] G. Mu, Z. Qin, R. Grimshaw, “Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation”, SIAM J. Appl. Math., 75:1 (2015), 1–20 | DOI | MR

[25] S. Xu, J. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation”, J. Math. Phys., 53:6 (2012), 063507, 17 pp., arXiv: 1109.3283 | DOI | MR

[26] Y. Ohta, J. K. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp., arXiv: 1206.2548 | DOI

[27] P. G. Kevrekidis, D. J. Frantzeskakis, “Solitons in coupled nonlinear Schrödinger models: A survey of recent developments”, Rev. Phys., 1 (2016), 140–153 | DOI

[28] E. P. Bashkin, A. V. Vagov, “Instability and stratification of a two-component Bose–Einstein condensate in a trapped ultracold gas”, Phys. Rev. B, 56:10 (1997), 6207–6212 | DOI

[29] M. J. Abowitz, T. K. Horikis, “Interacting nonlinear wave envelopes and rogue wave formation in deep water”, Phys. Fluids, 27:1 (2015), 012107, 10 pp., arXiv: 1407.5077 | DOI | Zbl

[30] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov k fotonnym kristallam, Fizmatlit, M., 2005

[31] Ya. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, L. Torner, “Frontiers in multidimensional self-trapping of nonlinear fields and matter”, Nat. Rev. Phys., 1 (2019), 185–197 | DOI

[32] A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford Univ. Press, Oxford, 1999 | MR

[33] H. Bailung, Y. Nakamura, “Observation of modulational instability in a multi-component plasma with negative ions”, J. Plasma Phys., 50:2 (1993), 231–242 | DOI

[34] H. Bailung, S. K. Sharma, Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107:25 (2011), 255005, 4 pp. | DOI

[35] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246, arXiv: physics/9712001 | DOI | MR

[36] C. M. Bender, D. C. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2003), 270401, 4 pp. | DOI | MR

[37] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to hermiticity”, J. Phys. A: Math. Gen., 36:25 (2003), 7081–7091, arXiv: quant-ph/0304080 | DOI | MR

[38] J. Yang, “Partially $\mathscr{P\!T}$ symmetric optical potentials with all-real spectra and soliton families in multidimensions”, Opt. Lett., 39:5 (2014), 1133–1136, arXiv: 1312.3660 | DOI

[39] Y. V. Kartashov, V. V. Konotop, L. Torner, “Topological states in partially-$\mathscr{P\!T}$-symmetric azimuthal potentials”, Phys. Rev. Lett., 115:19 (2015), 193902, 7 pp., arXiv: 1509.06551 | DOI | MR

[40] A. Beygi, S. Klevansky, C. M. Bender, “Coupled oscillator systems having partial $\mathscr{P\!T}$ symmetry”, Phys. Rev. A, 91:6 (2015), 062101, 11 pp., arXiv: 1503.05725 | DOI

[41] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[42] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI

[43] A. Khara, A. Saxena, “Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations”, J. Math. Phys., 56:3 (2015), 032104, 27 pp., arXiv: 1405.5267 | DOI | MR

[44] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[45] S.-Q. Song, D.-M. Xiao, Z.-N. Zhu, “Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 13–28 | DOI | MR

[46] A. S. Fokas, “Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:2 (2016), 319–324 | DOI | MR

[47] S. Y. Lou, F. Huang, “Alice–Bob physics: Coherent solutions of nonlocal KdV systems”, Sci. Rep., 7 (2017), 869, 11 pp., arXiv: 1606.03154 | DOI

[48] J. Rao, Y. Cheng, J. He, “Rational and semirational solutions of the nonlocal Davey–Stewartson equations”, Stud. Appl. Math., 139:4 (2017), 568–598 | DOI | MR

[49] B. Yang, Y. Chen, “Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions”, Chaos, 28:5 (2018), 053104, 6 pp. | DOI | MR

[50] Z. Wen, Z. Yan, “Solitons and their stability in the nonlocal nonlinear Schrödinger equation with $\mathscr{P\!T}$-symmetric potentials”, Chaos, 27:5 (2017), 053105, 7 pp., arXiv: 1705.09401 | DOI | MR

[51] Z. Yan, “Nonlocal general vector nonlinear Schrödinger equations: Integrability, $\mathscr{P\!T}$ symmetribility, and solutions”, Appl. Math. Lett., 62 (2016), 101–109 | DOI | MR

[52] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR

[53] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations”, J. Geom. Phys., 157 (2020), 103845, 8 pp. | DOI | MR

[54] X.-D. Luo, “Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg–de Vries equation with nonzero boundary conditions and constant phase shift”, Chaos, 29:7 (2019), 073118, 13 pp. | DOI | MR

[55] J. Rao, J. He, T. Kanna, D. Mihalache, “Nonlocal $M$-component nonlinear Schrödinger equations: Bright solitons, energy-sharing collisions, and positons”, Phys. Rev. E, 102:3 (2020), 032201, 19 pp. | DOI | MR

[56] M. J. Ablowitz, Z. H. Musslimani, “Integrable space-time shifted nonlocal nonlinear equations”, Phys. Lett. A, 409 (2021), 127516, 6 pp. | DOI | MR | Zbl

[57] X. Huang, L. Ling, “Soliton solutions for the nonlocal nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 131 (2016), 148, 11 pp. | DOI

[58] B. Yang, J. Yang, “Rogue waves in the nonlocal $\mathscr{P\!T}$-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109:4 (2019), 945–973, arXiv: 1711.05930 | DOI | MR

[59] W. Weng, G. Zhang, M. Zhang, Z. Zhou, Z. Yan, “Semi-rational vector rogon-soliton solutions and asymptotic analysis for any $n$-compoponent nonlinear Schrödinger equation with mixed boundary conditions”, Phys. D, 432 (2022), 133150, 15 pp. | DOI | MR

[60] G. Zhang, Z. Yan, “The $n$-component nonlinear Schrödinger equations: dark-bright mixed $N$- and high-order solitons and breathers, and dynamics”, Proc. R. Soc. A, 474:2215 (2018), 20170688, 20 pp. | DOI | MR

[61] M. Gürses, P. Pekcan, “Soliton solutions of the shifted nonlocal NLS and MKdV equations”, Phys. Lett. A, 422 (2022), 127793, 10 pp., arXiv: 2106.14252 | DOI | MR

[62] S.-M. Liu, J. Wang, D.-J. Zhang, “Solutions to integrable space-time shifted nonlocal equations”, Rep. Math. Phys., 89:2 (2022), 199–220, arXiv: 2107.04183 | DOI | MR

[63] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778, arXiv: nlin/0503001 | DOI | MR

[64] J. Lenells, “Dressing for a novel integrable generalization of the nonlinear Schrödinger equation”, J. Nonliner Sci., 20:6 (2010), 709–722 | DOI | MR

[65] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI