Mots-clés : solitons.
@article{TMF_2022_212_3_a2,
author = {Xiu-Bin Wang and Sh.-F. Tian},
title = {Exotic localized waves in the~shifted nonlocal multicomponent nonlinear {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {354--373},
year = {2022},
volume = {212},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/}
}
TY - JOUR AU - Xiu-Bin Wang AU - Sh.-F. Tian TI - Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 354 EP - 373 VL - 212 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/ LA - ru ID - TMF_2022_212_3_a2 ER -
Xiu-Bin Wang; Sh.-F. Tian. Exotic localized waves in the shifted nonlocal multicomponent nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 354-373. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a2/
[1] V. E. Zakharov, “Stabilnost periodicheskikh voln konechnoi amplitudy na poverkhnosti glubokoi zhidkosti”, Zhurn. prikl. mekh. i tekhn. fiz., 9:2 (1968), 86–94 | DOI
[2] G. P. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996
[3] A. Hasegawa, Y. Kodama, Solitons in Optical Communication, Clarendon Press, Oxford, 1995
[4] N. N. Akhmediev, A. Ankevich, Solitony. Nelineinye impulsy i puchki, Fizmatlit, M., 2003
[5] L. P. Pitaevskii, S. Stringari, Bose–Einstein Condensation, International Series of Monographs on Physics, 116, Oxford University Press, Oxford, 2003 | MR
[6] Z.-Y. Yan, “Financial rogue waves”, Commun. Theor. Phys., 54:5 (2010), 947–949, arXiv: 0911.4259 | DOI
[7] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self Focusing and Wave Collapse, Applied Mathematical Sciences, 139, Springer, New York, 1999 | DOI | MR
[8] G. Fibich, The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse, Applied Mathematical Sciences, 192, Springer, Cham, 2015 | DOI | MR
[9] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki v odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[10] M. J. Ablowitz, P. A. Clarkson, “Solitons, Nonlinear Evolution Equations and Inverse Scattering”, Mathematical Societe Lecture Notes Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[11] V. B. Matveev, M. A. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991 | MR
[12] X.-B. Wang, S.-F. Tian, T.-T. Zhang, “Characteristics of the breather and rogue waves in a $(2+1)$-dimensional nonlinear Schrödinger equation”, Proc. Amer. Math. Soc., 146:8 (2018), 3353–3365 | DOI | MR
[13] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions”, J. Austral. Math. Soc. Ser. B, 25:1 (1983), 16–43 | DOI | MR
[14] N. Akhmediev, A. Ankiewicz, J. M. Soto-Crespo, “Rogue waves and rational solutions of the nonlinear Schrödinger equation”, Phys. Rev. E, 80:2 (2009), 026601, 9 pp. | DOI
[15] B. Guo, L. Ling, Q. P. Liu, “Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions”, Phys. Rev. E, 85:2 (2012), 026607, 9 pp., arXiv: 1108.2867 | DOI
[16] A. Ankiewicz, J. M. Soto-Crespo, N. Akhmediev, “Rogue waves and rational solutions of the Hirota equation”, Phys. Rev. E, 81:4 (2010), 046602, 8 pp. | DOI | MR
[17] D. Qiu, J. He, Y. Zhang, K. Porsezian, “The Darboux transformation of the Kundu–Eckhaus equation”, Proc. R. Soc. A, 471:2180 (2015), 20150236, 20 pp. | DOI | MR
[18] U. Bandelow, N. Akhmediev, “Persistence of rogue waves in extended nonlinear Schrödinger equations: Integrable Sasa–Satsuma case”, Phys. Lett. A, 376:18 (2012), 1558–1561 | DOI
[19] S. Chen, “Twisted rogue-wave pairs in the Sasa–Satsuma equation”, Phys. Rev. E, 88:2 (2013), 023202, 5 pp. | DOI
[20] G. Mu, Z. Qin, R. Grimshaw, N. Akhmediev, “Intricate dynamics of rogue waves governed by the Sasa–Satsuma equation”, Phys. D, 402 (2020), 132252, 7 pp. | DOI | MR
[21] F. Baronio, A. Degasperis, M. Conforti, S. Wabnitz, “Solutions of the vector nonlinear Schrödinger equations: evidence for deterministic rogue waves”, Phys. Rev. Lett., 109:4 (2012), 044102, 4 pp., arXiv: 1204.1449 | DOI
[22] X.-B. Wang, B. Han, “Vector nonlinear waves in a two-component Bose–Einstein condensate system”, J. Phys. Soc. Japan, 89:12 (2020), 124003, 10 pp. | DOI
[23] X.-B. Wang, B. Han, “The three-component coupled nonlinear Schrödinger equation: Rogue waves on a multi-soliton background and dynamics”, Europhys. Lett., 126:1 (2018), 15001, 6 pp. | DOI
[24] G. Mu, Z. Qin, R. Grimshaw, “Dynamics of rogue waves on a multisoliton background in a vector nonlinear Schrödinger equation”, SIAM J. Appl. Math., 75:1 (2015), 1–20 | DOI | MR
[25] S. Xu, J. He, “The rogue wave and breather solution of the Gerdjikov–Ivanov equation”, J. Math. Phys., 53:6 (2012), 063507, 17 pp., arXiv: 1109.3283 | DOI | MR
[26] Y. Ohta, J. K. Yang, “Rogue waves in the Davey–Stewartson I equation”, Phys. Rev. E, 86:3 (2012), 036604, 8 pp., arXiv: 1206.2548 | DOI
[27] P. G. Kevrekidis, D. J. Frantzeskakis, “Solitons in coupled nonlinear Schrödinger models: A survey of recent developments”, Rev. Phys., 1 (2016), 140–153 | DOI
[28] E. P. Bashkin, A. V. Vagov, “Instability and stratification of a two-component Bose–Einstein condensate in a trapped ultracold gas”, Phys. Rev. B, 56:10 (1997), 6207–6212 | DOI
[29] M. J. Abowitz, T. K. Horikis, “Interacting nonlinear wave envelopes and rogue wave formation in deep water”, Phys. Fluids, 27:1 (2015), 012107, 10 pp., arXiv: 1407.5077 | DOI | Zbl
[30] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov k fotonnym kristallam, Fizmatlit, M., 2005
[31] Ya. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, L. Torner, “Frontiers in multidimensional self-trapping of nonlinear fields and matter”, Nat. Rev. Phys., 1 (2019), 185–197 | DOI
[32] A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures, Oxford Univ. Press, Oxford, 1999 | MR
[33] H. Bailung, Y. Nakamura, “Observation of modulational instability in a multi-component plasma with negative ions”, J. Plasma Phys., 50:2 (1993), 231–242 | DOI
[34] H. Bailung, S. K. Sharma, Y. Nakamura, “Observation of Peregrine solitons in a multicomponent plasma with negative ions”, Phys. Rev. Lett., 107:25 (2011), 255005, 4 pp. | DOI
[35] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having PT symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246, arXiv: physics/9712001 | DOI | MR
[36] C. M. Bender, D. C. Brody, H. F. Jones, “Complex extension of quantum mechanics”, Phys. Rev. Lett., 89:27 (2003), 270401, 4 pp. | DOI | MR
[37] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to hermiticity”, J. Phys. A: Math. Gen., 36:25 (2003), 7081–7091, arXiv: quant-ph/0304080 | DOI | MR
[38] J. Yang, “Partially $\mathscr{P\!T}$ symmetric optical potentials with all-real spectra and soliton families in multidimensions”, Opt. Lett., 39:5 (2014), 1133–1136, arXiv: 1312.3660 | DOI
[39] Y. V. Kartashov, V. V. Konotop, L. Torner, “Topological states in partially-$\mathscr{P\!T}$-symmetric azimuthal potentials”, Phys. Rev. Lett., 115:19 (2015), 193902, 7 pp., arXiv: 1509.06551 | DOI | MR
[40] A. Beygi, S. Klevansky, C. M. Bender, “Coupled oscillator systems having partial $\mathscr{P\!T}$ symmetry”, Phys. Rev. A, 91:6 (2015), 062101, 11 pp., arXiv: 1503.05725 | DOI
[41] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[42] M. J. Ablowitz, Z. H. Musslimani, “Integrable discrete $PT$ symmetric model”, Phys. Rev. E, 90:3 (2014), 032912, 5 pp. | DOI
[43] A. Khara, A. Saxena, “Periodic and hyperbolic soliton solutions of a number of nonlocal nonlinear equations”, J. Math. Phys., 56:3 (2015), 032104, 27 pp., arXiv: 1405.5267 | DOI | MR
[44] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[45] S.-Q. Song, D.-M. Xiao, Z.-N. Zhu, “Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 13–28 | DOI | MR
[46] A. S. Fokas, “Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:2 (2016), 319–324 | DOI | MR
[47] S. Y. Lou, F. Huang, “Alice–Bob physics: Coherent solutions of nonlocal KdV systems”, Sci. Rep., 7 (2017), 869, 11 pp., arXiv: 1606.03154 | DOI
[48] J. Rao, Y. Cheng, J. He, “Rational and semirational solutions of the nonlocal Davey–Stewartson equations”, Stud. Appl. Math., 139:4 (2017), 568–598 | DOI | MR
[49] B. Yang, Y. Chen, “Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions”, Chaos, 28:5 (2018), 053104, 6 pp. | DOI | MR
[50] Z. Wen, Z. Yan, “Solitons and their stability in the nonlocal nonlinear Schrödinger equation with $\mathscr{P\!T}$-symmetric potentials”, Chaos, 27:5 (2017), 053105, 7 pp., arXiv: 1705.09401 | DOI | MR
[51] Z. Yan, “Nonlocal general vector nonlinear Schrödinger equations: Integrability, $\mathscr{P\!T}$ symmetribility, and solutions”, Appl. Math. Lett., 62 (2016), 101–109 | DOI | MR
[52] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR
[53] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal complex reverse-spacetime mKdV equations”, J. Geom. Phys., 157 (2020), 103845, 8 pp. | DOI | MR
[54] X.-D. Luo, “Inverse scattering transform for the complex reverse space-time nonlocal modified Korteweg–de Vries equation with nonzero boundary conditions and constant phase shift”, Chaos, 29:7 (2019), 073118, 13 pp. | DOI | MR
[55] J. Rao, J. He, T. Kanna, D. Mihalache, “Nonlocal $M$-component nonlinear Schrödinger equations: Bright solitons, energy-sharing collisions, and positons”, Phys. Rev. E, 102:3 (2020), 032201, 19 pp. | DOI | MR
[56] M. J. Ablowitz, Z. H. Musslimani, “Integrable space-time shifted nonlocal nonlinear equations”, Phys. Lett. A, 409 (2021), 127516, 6 pp. | DOI | MR | Zbl
[57] X. Huang, L. Ling, “Soliton solutions for the nonlocal nonlinear Schrödinger equation”, Eur. Phys. J. Plus, 131 (2016), 148, 11 pp. | DOI
[58] B. Yang, J. Yang, “Rogue waves in the nonlocal $\mathscr{P\!T}$-symmetric nonlinear Schrödinger equation”, Lett. Math. Phys., 109:4 (2019), 945–973, arXiv: 1711.05930 | DOI | MR
[59] W. Weng, G. Zhang, M. Zhang, Z. Zhou, Z. Yan, “Semi-rational vector rogon-soliton solutions and asymptotic analysis for any $n$-compoponent nonlinear Schrödinger equation with mixed boundary conditions”, Phys. D, 432 (2022), 133150, 15 pp. | DOI | MR
[60] G. Zhang, Z. Yan, “The $n$-component nonlinear Schrödinger equations: dark-bright mixed $N$- and high-order solitons and breathers, and dynamics”, Proc. R. Soc. A, 474:2215 (2018), 20170688, 20 pp. | DOI | MR
[61] M. Gürses, P. Pekcan, “Soliton solutions of the shifted nonlocal NLS and MKdV equations”, Phys. Lett. A, 422 (2022), 127793, 10 pp., arXiv: 2106.14252 | DOI | MR
[62] S.-M. Liu, J. Wang, D.-J. Zhang, “Solutions to integrable space-time shifted nonlocal equations”, Rep. Math. Phys., 89:2 (2022), 199–220, arXiv: 2107.04183 | DOI | MR
[63] W.-X. Ma, Y. You, “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357:5 (2005), 1753–1778, arXiv: nlin/0503001 | DOI | MR
[64] J. Lenells, “Dressing for a novel integrable generalization of the nonlinear Schrödinger equation”, J. Nonliner Sci., 20:6 (2010), 709–722 | DOI | MR
[65] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI