Cosmological constant, scalar field, and the coincidence
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 478-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a phenomenological model in which dark matter in the cosmological constant form is identified with the mean energy–momentum tensor of a causally unrelated region. The dynamics of the parameter introduced in this model are considered, a possible method for solving the coincidence problem is proposed. We also find the form of the scalar field potential corresponding to the presented model.
Keywords: cosmological constant, inflationary expansion, scalar field.
@article{TMF_2022_212_3_a10,
     author = {V. I. Kochkin},
     title = {Cosmological constant, scalar field, and the~coincidence},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {478--488},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a10/}
}
TY  - JOUR
AU  - V. I. Kochkin
TI  - Cosmological constant, scalar field, and the coincidence
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 478
EP  - 488
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a10/
LA  - ru
ID  - TMF_2022_212_3_a10
ER  - 
%0 Journal Article
%A V. I. Kochkin
%T Cosmological constant, scalar field, and the coincidence
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 478-488
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a10/
%G ru
%F TMF_2022_212_3_a10
V. I. Kochkin. Cosmological constant, scalar field, and the coincidence. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 478-488. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a10/

[1] A. D. Linde, Fizika elementarnykh chastits i inflyatsionnaya kosmologiya, Nauka, M., 1990 | DOI | MR

[2] A. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038, arXiv: astro-ph/9805201 | DOI

[3] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586, arXiv: astro-ph/9812133 | DOI

[4] J. Yoo, Y. Watanabe, “Theoretical models of dark energy”, Internat. J. Modern Phys. D, 21:12 (2012), 1230002, 53 pp., arXiv: 1212.4726 | DOI | Zbl

[5] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI | MR

[6] S. Vainberg, “Problema kosmologicheskoi postoyannoi”, UFN, 158:4 (1989), 639–678 | DOI | DOI

[7] V. I. Kochkin, “Dinamika Vselennoi Fridmana s dobavleniem granichnykh chlenov v deistvie”, TMF, 206:2 (2021), 269–276 | DOI | DOI | MR

[8] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Teoriya goryachego Bolshogo vzryva, URSS, M., 2022 | DOI

[9] V. Poulin, T. L. Smith, T. Karwal, M. Kamionkowski, “Early dark energy can resolve the Hubble tension”, Phys. Rev. Lett., 122:22 (2019), 221301, 7 pp., arXiv: 1811.04083 | DOI

[10] D. S. Gorbunov, V. A. Rubakov, Vvedenie v teoriyu rannei Vselennoi. Kosmologicheskie vozmuscheniya. Inflyatsionnaya teoriya, URSS, M., 2022

[11] J. F. Jesus, A. A. Escobal, D. Benndorf, S. H. Pereira, “Can dark matter–dark energy interaction alleviate the cosmic coincidence problem?”, Eur. Phys. J. C, 82 (2022), 273, 10 pp., arXiv: 2012.07494 | DOI

[12] P. A. R. Ade, N. Aghanim, M. Arnaud et al. [Planck Collab.], “Planck 2015 results. XIII. Cosmological parameters”, Astron. Astrophys., 594 (2016), A13, 63 pp., arXiv: 1502.01589 | DOI

[13] C. A. Sporea, Notes on $f(R)$ theories of gravity, arXiv: 1403.3852

[14] E. B. Gliner, “Razduvayuschayasya Vselennaya i vakuumnopodobnoe sostoyanie fizicheskoi sredy”, UFN, 172:2 (2002), 221–228 | DOI | DOI

[15] V. I. Ogievetskii, L. Mezinchesku, “Simmetrii mezhdu bozonami i fermionami i superpolya”, UFN, 117:4 (1975), 637–683 | DOI | DOI