Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 340-353 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct joint $2\times2$ matrix solutions of the scalar linear evolution equations $\Psi'_{s_k}=H^{3+2}_{s_k}(s_1,s_2,[0]x_1,x_2, \partial/\partial x_1,\partial/\partial x_2)\Psi$ with times $s_1$ and $s_2$, which can be treated as analogues of the time-dependent Schrödinger equations. These equations correspond to the so-called $H^{3+2}$ Hamiltonian system, which is a representative of a hierarchy of degenerations of the isomonodromic Garnier system described by Kimura in 1986. This compatible system of Hamiltonian ordinary differential equations is defined by two different Hamiltonians $H^{3+2}_{s_k}(s_1,s_2,q_1,q_2,p_1,p_2)$, $k=1,2$, with two degrees of freedom corresponding to the time variables $s_1$ and $s_2$. In terms of solutions of the linear systems of ordinary differential equations obtained by the isomonodromic deformation method, with the compatibility condition given by the Hamilton equations of the $H^{3+2}$ system, the constructed compatible solutions of analogues of the time-dependent Schrödinger equations are presented explicitly. We also present a change of variables relating the matrix solutions of analogues of the time-dependent Schrödinger equations defined by two forms of the $H^{3+2}$ system (rational and polynomial in coordinates). This system is a quantum analogue of the well-known canonical transformation relating the Hamilton equations of the $H^{3+2}$ system in these two forms.
Keywords: Hamiltonian systems, time-dependent Schrödinger equations
Mots-clés : Painlevé-type equations, isomonodromic deformation method.
@article{TMF_2022_212_3_a1,
     author = {V. A. Pavlenko},
     title = {Solutions of the~analogues of time-dependent {Schr\"odinger} equations corresponding to a~pair of $H^{3+2}$ {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--353},
     year = {2022},
     volume = {212},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/}
}
TY  - JOUR
AU  - V. A. Pavlenko
TI  - Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 340
EP  - 353
VL  - 212
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/
LA  - ru
ID  - TMF_2022_212_3_a1
ER  - 
%0 Journal Article
%A V. A. Pavlenko
%T Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 340-353
%V 212
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/
%G ru
%F TMF_2022_212_3_a1
V. A. Pavlenko. Solutions of the analogues of time-dependent Schrödinger equations corresponding to a pair of $H^{3+2}$ Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 340-353. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/

[1] R. Garnier, “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre su'erieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup., 29 (1912), 1–126 | MR

[2] B. I. Culeimanov, “Gamiltonova struktura uravnenii Penleve i metod izomonodromnykh deformatsii”, Asimptoticheskie svoistva reshenii differentsialnykh uravnenii, In-t matem., Ufa, 1988, 93–102

[3] B. I. Culeimanov, “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Differents. uravneniya, 30:5 (1994), 791–796 | MR

[4] B. I. Suleimanov, “‘Kvantovaniya’ vysshikh gamiltonovykh analogov uravnenii Penleve I i II s dvumya stepenyami svobody”, Funkts. analiz i ego pril., 48:3 (2014), 52–62 | DOI | DOI | MR | Zbl

[5] A. Bloemendal, B. Virág, “Limits of spiked random matrices I.”, Probab. Theory Related Fields, 156:3–4 (2013), 795–825 | DOI | MR

[6] A. Bloemendal, B. Virág, “Limits of spiked random matrices II”, Ann. Probab., 44:4 (2016), 2726–2769 | DOI | MR

[7] R. Conte, “Generalized Bonnet surfaces and Lax pairs of P$_\mathrm{VI}$”, J. Math. Phys., 58:10 (2017), 103508, 31 pp. | DOI | MR

[8] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR

[9] T. Grava, A. Its, A. Kapaev, F. Mezzadri, “On the Tracy–Widom$_\beta$ distribution for $\beta=6$”, SIGMA, 12 (2016), 105, 26 pp., arXiv: 1607.01351 | DOI | MR

[10] A. M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A: Math. Theor., 48:24 (2015), 245201, 15 pp., arXiv: 1405.0968 | DOI | MR

[11] A. Levin, M. Olshanetsky, A. Zotov, “Planck constant as spectral parameter in integrable systems and KZB equations”, JHEP, 2014:10 (2014), 109, 29 pp. | DOI | MR

[12] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 083509, 16 pp. | DOI | MR

[13] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Ann. Henri Poincaré, 15:2 (2014), 313–344 | DOI | MR

[14] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé VI”, Painlevé Equations and Related Topics, Proceedings of International Conference (Saint Petersburg, Russia, June 17–23, 2011), Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121

[15] H. Rosengren, Special polynomials related to the supersymmetric eight-vertex model. II. Schrödinger equation, arXiv: 1312.5879

[16] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Comm. Math. Phys., 340:3 (2015), 1143–1170, arXiv: 1503.02833 | DOI | MR

[17] I. Rumanov, “Hard edge for $\beta$-ensembles and Painlevé III”, Int. Math. Res. Not., 2014:23 (2014), 6576–6617 | DOI | MR

[18] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker–Planck equations”, J. Math. Phys., 56:1 (2015), 013508, 16 pp. | DOI | MR

[19] I. Rumanov, “Beta ensembles, quantum Painlevé equations and isomonodromy systems”, Algebraic and Geometric Aspects of Integrable Systems and Painlevé Equations (Boston, MA, 2012), Contemporary Mathematics, 593, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, RI, 2013, 125–155 | DOI | MR

[20] I. Rumanov, “Painlevé representation of Tracy–Widom$_\beta$ distribution for $\beta=6$”, Comm. Math. Phys., 342:3 (2016), 843–868 | DOI | MR

[21] H. Sakai, Isomonodromic deformation and $4$-dimensional Painlevé-type equations, preprint, University of Tokyo, Tokyo, 2010

[22] A. H. Sakka, “Linear problems and hierarchies of Painlevé equations”, J. Phys. A: Math. Theor., 42:2 (2009), 025210, 19 pp. | DOI | MR

[23] A. Vartanian, Trans-series asymptotics of solutions to the degenerate Painlevé III equation: A case study, arXiv: 2010.11235

[24] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53:7 (2012), 073507, 19 pp. | DOI | MR

[25] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 | DOI | MR

[26] A. V. Zotov, A. V. Smirnov, “Modifikatsiya rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | DOI | MR | Zbl

[27] A. M. Levin, M. A. Olshanetskii, A. V. Zotov, “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124 | DOI | DOI | MR | Zbl

[28] D. P. Novikov, “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | DOI | MR | Zbl

[29] D. P. Novikov, R. K. Romanovskii, S. G. Sadovnichuk, Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013

[30] D. P. Novikov, B. I. Suleimanov, “‘Kvantovaniya’ izomonodromnoi gamiltonovoi sistemy Garne s dvumya stepenyami svobody”, TMF, 187:1 (2016), 39–57 | DOI | DOI | MR

[31] V. A. Pavlenko, B. I. Suleimanov, “Resheniya analogov vremennykh uravnenii Shredingera, opredelyaemykh izomonodromnoi gamiltonovoi sistemoi $H^{2+1+1+1}$”, Ufimsk. matem. zhurn., 10:4 (2018), 92–102 | DOI

[32] V. A. Pavlenko, B. I. Suleimanov, “Yavnye resheniya analogov vremennykh uravnenii Shredingera c gamiltonovoi sistemoi N$^{4+1}$”, Izv. RAN. Ser. Fizicheskaya, 84:5 (2020), 695–698 | DOI

[33] V. A. Pavlenko, B. I. Suleimanov, “‘Kvantovaniya’ izomonodromnoi gamiltonovoi sistemy $H^{7/2+1}$”, Ufimsk. matem. zhurn., 9:4 (2017), 100–110 | DOI

[34] B. I. Culeimanov, “‘Kvantovaniya’ vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L$–$A$-par”, TMF, 156:3 (2008), 364–378 | DOI | DOI | MR | Zbl

[35] B. I. Culeimanov, “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy mezhdunarodnoi konferentsii “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennoi pamyati I. G. Petrovskogo, 23-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i Ceminara imeni I. G. Petrovskogo" (Moskva, 29 maya – 4 iyunya 2011 g.), Izd-vo Mosk. un-ta, M., 2011, 356–357

[36] B. I. Suleimanov, “‘Kvantovaya’ linearizatsiya uravnenii Penleve kak komponenta ikh $L$, $A$ par”, Ufimsk. matem. zhurn., 4:2 (2012), 127–135

[37] B. I. Suleimanov, “Kvantovye aspekty integriruemosti tretego uravneniya Penleve i resheniya vremennogo uravneniya Shredingera s potentsialom Morsa”, Ufimsk. matem. zhurn., 8:3 (2016), 141–159 | DOI

[38] B. I. Suleimanov, “Izomonodromnoe kvantovanie vtorogo uravneniya Penleve posredstvom konservativnykh gamiltonovykh sistem s dvumya stepenyami svobody”, Algebra i analiz, 33:6 (2021), 141–161

[39] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of 4-dimensional Painlevé-type equations, arXiv: 1209.3836

[40] H. Kawakami, A. Nakamura, H. Sakai, “Toward a classification of four-dimensional Painlevé-type equations”, Algebraic and Geometric Aspects of Integrable Systems and Painlevé Equations, 593 (Boston, MA, 2012), Contemporary Mathematics, eds. A. Dzhamay, K. Maruno, V. U. Pierce, AMS, Providence, RI, 2013, 143–161 | MR

[41] H. Kawamuko, “On the Garnier system of half-integer type in two variables”, Funkcial. Ekvac., 52:2 (2009), 181–201 | DOI | MR

[42] H. Kimura, “The degeneration of the two dimensional Garnier system and the polynomial Hamiltonian structure”, Ann. Mat. Pura Appl. (IV), 155 (1989), 25–74 | DOI | MR

[43] F. Lund, “Classically solvable field theory model”, Ann. Phys., 115:2 (1978), 251–268 | DOI | MR

[44] B. S. Getmanov, “Integriruemaya model nelineinogo kompleksnogo skalyarnogo polya s netrivialnoi asimptotikoi solitonnykh reshenii”, TMF, 38:2 (1979), 186–194 | DOI | MR

[45] B. I. Suleimanov, “Vliyanie maloi dispersii na samofokusirovku v prostranstvenno odnomernom sluchae”, Pisma v ZhETF, 106:6 (2017), 375–380 | DOI | DOI

[46] D. Bilman, R. Buckingham, “Large-order asymptotics for multiple-pole solitons of the focusing nonlinear Schrödinger equation”, J. Nonlinear Sci., 29:5 (2019), 2185–2229, arXiv: 1807.09058 | DOI | MR

[47] D. Bilman, L. Ling, P. D. Miller, “Extreme superposition: rogue waves of infinite order and the Painlevé-III hierarchy”, Duke Math. J., 169:4 (2020), 671–760 | DOI | MR

[48] D. Bilman, P. D. Miller, Extreme superposition: high-order fundamental rogue waves in the far-field regime, arXiv: 2103.00337

[49] A. V. Kitaev, “Meromorphic solution of the degenerate third Painlevé equation vanishing at the origin”, SIGMA, 15 (2019), 46, 53 pp. | DOI | MR

[50] S. Li, P. D. Miller, On the Maxwell–Bloch system in the sharp-line limit without solitons, arXiv: 2105.13293

[51] L. Ling, X. Zhang, Large and infinite order solitons of the coupled nonlinear Schrödinger equation, arXiv: 2103.15373