Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 340-353

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct joint $2\times2$ matrix solutions of the scalar linear evolution equations $\Psi'_{s_k}=H^{3+2}_{s_k}(s_1,s_2,[0]x_1,x_2, \partial/\partial x_1,\partial/\partial x_2)\Psi$ with times $s_1$ and $s_2$, which can be treated as analogues of the time-dependent Schrödinger equations. These equations correspond to the so-called $H^{3+2}$ Hamiltonian system, which is a representative of a hierarchy of degenerations of the isomonodromic Garnier system described by Kimura in 1986. This compatible system of Hamiltonian ordinary differential equations is defined by two different Hamiltonians $H^{3+2}_{s_k}(s_1,s_2,q_1,q_2,p_1,p_2)$, $k=1,2$, with two degrees of freedom corresponding to the time variables $s_1$ and $s_2$. In terms of solutions of the linear systems of ordinary differential equations obtained by the isomonodromic deformation method, with the compatibility condition given by the Hamilton equations of the $H^{3+2}$ system, the constructed compatible solutions of analogues of the time-dependent Schrödinger equations are presented explicitly. We also present a change of variables relating the matrix solutions of analogues of the time-dependent Schrödinger equations defined by two forms of the $H^{3+2}$ system (rational and polynomial in coordinates). This system is a quantum analogue of the well-known canonical transformation relating the Hamilton equations of the $H^{3+2}$ system in these two forms.
Keywords: Hamiltonian systems, Painlevé-type equations, time-dependent Schrödinger equations
Mots-clés : isomonodromic deformation method.
@article{TMF_2022_212_3_a1,
     author = {V. A. Pavlenko},
     title = {Solutions of the~analogues of time-dependent {Schr\"odinger} equations corresponding to a~pair of $H^{3+2}$ {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {340--353},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/}
}
TY  - JOUR
AU  - V. A. Pavlenko
TI  - Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 340
EP  - 353
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/
LA  - ru
ID  - TMF_2022_212_3_a1
ER  - 
%0 Journal Article
%A V. A. Pavlenko
%T Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 340-353
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/
%G ru
%F TMF_2022_212_3_a1
V. A. Pavlenko. Solutions of the~analogues of time-dependent Schr\"odinger equations corresponding to a~pair of $H^{3+2}$ Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 340-353. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a1/