On the~blowup of solutions of the~Cauchy problem for nonlinear equations of ferroelectricity theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 327-339

Voir la notice de l'article provenant de la source Math-Net.Ru

We study two Cauchy problems for nonlinear equations of the Sobolev type, of the form $ \frac{\partial}{\partial t}\frac{\partial^2u}{\partial x_3^2} + \Delta u=|u|^q $ and $ \frac{\partial}{\partial t}\Delta_{\perp}u + \Delta u= |u|^q$. We find conditions under which weak generalized local-in-time solutions of the Cauchy problem exist, and we also find conditions under which solutions blow up.
Keywords: Sobolev-type nonlinear equations, blowup, local solvability, nonlinear capacity.
@article{TMF_2022_212_3_a0,
     author = {M. O. Korpusov and R. S. Shafir},
     title = {On the~blowup of solutions of {the~Cauchy} problem for nonlinear equations of ferroelectricity theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {327--339},
     publisher = {mathdoc},
     volume = {212},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a0/}
}
TY  - JOUR
AU  - M. O. Korpusov
AU  - R. S. Shafir
TI  - On the~blowup of solutions of the~Cauchy problem for nonlinear equations of ferroelectricity theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 327
EP  - 339
VL  - 212
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a0/
LA  - ru
ID  - TMF_2022_212_3_a0
ER  - 
%0 Journal Article
%A M. O. Korpusov
%A R. S. Shafir
%T On the~blowup of solutions of the~Cauchy problem for nonlinear equations of ferroelectricity theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 327-339
%V 212
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a0/
%G ru
%F TMF_2022_212_3_a0
M. O. Korpusov; R. S. Shafir. On the~blowup of solutions of the~Cauchy problem for nonlinear equations of ferroelectricity theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 3, pp. 327-339. http://geodesic.mathdoc.fr/item/TMF_2022_212_3_a0/