Similarity reductions of peakon equations: the~$b$-family
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 303-324

Voir la notice de l'article provenant de la source Math-Net.Ru

The $b$-family is a one-parameter family of Hamiltonian partial differential equations of nonevolutionary type, which arises in shallow water wave theory. It admits a variety of solutions, including the celebrated peakons, which are weak solutions in the form of peaked solitons with a discontinuous first derivative at the peaks, as well as other interesting solutions that have been obtained in exact form and/or numerically. In each of the special cases $b=2$ and $b=3$ (the respective Camassa–Holm and Degasperis–Procesi equations), the equation is completely integrable, in the sense that it admits a Lax pair and an infinite hierarchy of commuting local symmetries, but for other values of the parameter $b$ it is nonintegrable. After a discussion of traveling waves via the use of a reciprocal transformation, which reduces to a hodograph transformation at the level of the ordinary differential equation satisfied by these solutions, we apply the same technique to the scaling similarity solutions of the $b$-family and show that when $b=2$ or $b=3$, this similarity reduction is related by a hodograph transformation to particular cases of the Painlevé III equation, while for all other choices of $b$ the resulting ordinary differential equation is not of Painlevé type.
Keywords: peakon, Painlevé equation, reciprocal transformation
Mots-clés : hodograph transformation.
@article{TMF_2022_212_2_a9,
     author = {L. E. Barnes and A. N. W. Hone},
     title = {Similarity reductions of peakon equations: the~$b$-family},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {303--324},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/}
}
TY  - JOUR
AU  - L. E. Barnes
AU  - A. N. W. Hone
TI  - Similarity reductions of peakon equations: the~$b$-family
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 303
EP  - 324
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/
LA  - ru
ID  - TMF_2022_212_2_a9
ER  - 
%0 Journal Article
%A L. E. Barnes
%A A. N. W. Hone
%T Similarity reductions of peakon equations: the~$b$-family
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 303-324
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/
%G ru
%F TMF_2022_212_2_a9
L. E. Barnes; A. N. W. Hone. Similarity reductions of peakon equations: the~$b$-family. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 303-324. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/