Mots-clés : Painlevé equation, hodograph transformation.
@article{TMF_2022_212_2_a9,
author = {L. E. Barnes and A. N. W. Hone},
title = {Similarity reductions of peakon equations: the~$b$-family},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {303--324},
year = {2022},
volume = {212},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/}
}
L. E. Barnes; A. N. W. Hone. Similarity reductions of peakon equations: the $b$-family. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 303-324. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a9/
[1] A. Degasperis, D. D. Kholm, A. Khon, “Novoe integriruemoe uravnenie s pikonnymi resheniyami”, TMF, 133:2 (2002), 170–183 | DOI | DOI | MR
[2] A. Degasperis, D. D. Holm, A. N. W. Hone, “Integrable and non-integrable equations with peakons”, Nonlinear Physics. Theory and Experiment II (Gallipoli, Italy, 27 June – 6 July 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 37–43, arXiv: nlin/0209008 | DOI | MR
[3] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, Italy, December 16–22, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR
[4] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR
[5] B. Fuchssteiner, A. S. Fokas, “Symplectic structures, their Bäcklund transformation and hereditary symmetries”, Phys. D, 4:1 (1981), 47–66 | DOI | MR
[6] H. R. Dullin, G. A. Gottwald, D. D. Holm, “Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves”, Fluid Dynam. Res., 33:1–2 (2003), 73–95 | DOI | MR
[7] H. R. Dullin, G. A. Gottwald, D. D. Holm, “On asymptotically equivalent shallow water wave equations”, Phys. D, 190:1–2 (2004), 1–14 | DOI | MR
[8] A. Constantine, D. Lannes, “The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equation”, Arch. Ration. Mech. Anal., 192:1 (2009), 165–186 | DOI | MR
[9] R. I. Ivanov, “Water waves and integrability”, Philos. Trans. R. Soc. London Ser. A, 365:1858 (2007), 2267–2280, arXiv: 0707.1839 | DOI | MR
[10] D. D. Holm, A. N. W. Hone, “A class of equations with peakon and pulson solutions (with an Appendix by Harry Braden and John Byatt-Smith)”, J. Nonlinear Math. Phys., 12, suppl. 1 (2005), 380–394 | DOI | MR
[11] A. Chertock, J.-G. Liu, T. Pendleton, “Convergence of a particle method and global weak solutions of a family of evolutionary PDEs”, SIAM J. Numer. Anal., 50:1 (2012), 1–21 | DOI | MR
[12] R. Beals, D. H. Sattinger, J. Szmigielski, “Multi-peakons and a theorem of Stieltjes”, Inverse Problems, 15:1 (1999), L1–L4 | DOI | MR
[13] R. Beals, D. H. Sattinger, J. Szmigielski, “Multipeakons and the classical moment problem”, Adv. Math., 154:2 (2000), 229–257 | DOI | MR
[14] H. Lundmark, J. Szmigielski, “Multi-peakon solutions of the Degasperis–Procesi equation”, Inverse Problems, 19:6 (2003), 1241–1245, arXiv: nlin/0503033 | DOI | MR
[15] H. Lundmark, J. Szmigielski, “Degasperis–Procesi peakons and the discrete cubic string”, Internat. Math. Res. Rap., 2005:2 (2005), 53–116 | DOI | MR
[16] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equations”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR
[17] A. N. W. Hone, S. Lafortune, “Stability of stationary solutions for nonintegrable peakon equations”, Phys. D, 269 (2014), 28–36 | DOI | MR
[18] J. Escher, B. Kolev, “The Degasperis–Procesi equation as a non-metric Euler equation”, Math. Z., 269:3–4 (2011), 1137–1153 | DOI | MR
[19] G. Misiołek, “A shallow water equation as a geodesic flow on the Bott–Virasoro group”, J. Geom. Phys., 24:3 (1998), 203–208 | DOI | MR
[20] A. N. W. Hone, “Painlevé tests, singularity structure and integrability”, Integrability, Lecture Notes in Physics, 767, ed. A. V. Mikhailov, Springer, Berlin, 2009, 245–277 | DOI | MR
[21] A. V. Mikhailov, V. S. Novikov, “Perturbative symmetry approach”, J. Phys. A: Math. Gen., 35:22 (2002), 4775–4790 | DOI | MR
[22] V. P. Ermakov, “Differentsialnye uravneniya vtorogo poryadka. Usloviya integriruemosti v konechnom vide”, Univ. izv. Kiev, 20:9 (1880), 1–25 | DOI | MR
[23] D. D. Holm, M. F. Staley, “Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a $1+1$ nonlinear evolutionary PDE”, Phys. Lett. A, 308:5–6 (2003), 437–444, arXiv: nlin/0203007 | DOI | MR
[24] D. D. Holm, M. F. Staley, “Wave structure and nonlinear balances in a family of evolutionary PDEs”, SIAM J. Appl. Dyn. Syst., 2:3 (2003), 323–380 | DOI | MR
[25] T. Tao, “Why are solitons stable?”, Bull. Amer. Math. Soc. (N. S.), 46:1 (2009), 1–33 | DOI | MR
[26] H. Inci, “On the well-posedness of the Holm–Staley $b$-family of equations”, J. Nonlinear Math. Phys., 23:2 (2016), 213–233 | DOI | MR
[27] L. Molinet, “A rigidity result for the Holm–Staley $b$-family of equations with application to the asymptotic stability of the Degasperis–Procesi peakon”, Nonlinear Anal. Real World Appl., 2019, 675–705 | DOI | MR
[28] E. G. Charalampidis, R. Parker, P. G. Kevrekidis, S. Lafortune, The stability of the $b$-family of peakon equations, arXiv: 2012.13019
[29] S. Lafortune, D. E. Pelinovsky, Spectral instability of peakons in the $b$-family of the Camassa–Holm equations, arXiv: 2105.13196
[30] A. N. W. Hone, “The associated Camassa–Holm equation and the KdV equation”, J. Phys. A: Math. Gen., 32:27 (1999), L307–L314 | DOI | MR
[31] R. Camassa, D. D. Holm, J. M. Hyman, “A new integrable shallow water equation”, Adv. Appl. Mech., 31:1 (1994), 1–33 | DOI
[32] Y. Matsuno, “The $N$-soliton solution of the Degasperis–Procesi equation”, Inverse Problems, 21:6 (2005), 2085–2101 | DOI | MR
[33] Y. A. Li, P. J. Olver, “Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons”, Discrete Contin. Dynam. Syst., 3:3 (1997), 419–432 | DOI | MR
[34] A. Constantin, H. P. McKean, “A shallow water equation on the circle”, Comm. Pure Appl. Math., 52:8 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[35] K. Okamoto, “On the $\tau$-function of the Painlevé equations”, Phys. D, 2:3 (1981), 525–535 | DOI | MR
[36] A. E. Milne, P. A. Clarkson, A. P. Bassom, “Bäcklund transformations and solution hierarchies for the third Painlevé equation”, Stud. Appl. Math., 98:2 (1997), 139–194 | DOI | MR
[37] P. A. Clarkson, “The third Painlevé equation and associated special polynomial”, J. Phys. A: Math. Gen., 36:36 (2003), 9507–9532 | DOI | MR
[38] P. J. Forrester, N. S. Witte, “Application of the $\tau$-function theory of Painlevé equations to random matrices: $\rm P_\mathrm{V}$, $\rm P_\mathrm{III}$, the LUE, JUE, and CUE”, Comm. Pure Appl. Math., 55:6 (2002), 679–727 | DOI | MR
[39] L. E. Barnes, Integrable and non-integrable equations with peaked soliton solutions, PhD thesis, University of Kent, 2020
[40] A. S. Fokas, “On a class of physically important integrable equations”, Phys. D, 87:1–4 (1995), 145–150 | DOI | MR
[41] P. J. Olver, P. Rosenau, “Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support”, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR
[42] Z. Qiao, “A new integrable equation with cuspons and W/M-shape-peaks solitons”, J. Math. Phys., 47:11 (2006), 112701, 9 pp. | DOI | MR
[43] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR