Local dynamics of equation with periodically distributed delay
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 273-286
Voir la notice de l'article provenant de la source Math-Net.Ru
We study an equation with periodically distributed delay. The dependence of the equilibrium state stability on the parameters is
investigated. We show that the stability region can have a complicated shape. For a long delay, we construct the asymptotic
approximations of expressions for the stability region boundary in
the parameter space. We construct the normal forms and determine the occurring bifurcations in the critical cases.
Keywords:
delay, dynamics, asymptotics, normal form.
@article{TMF_2022_212_2_a7,
author = {I. S. Kashchenko and E. M. Glushevskii},
title = {Local dynamics of equation with periodically distributed delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--286},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/}
}
TY - JOUR AU - I. S. Kashchenko AU - E. M. Glushevskii TI - Local dynamics of equation with periodically distributed delay JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 273 EP - 286 VL - 212 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/ LA - ru ID - TMF_2022_212_2_a7 ER -
I. S. Kashchenko; E. M. Glushevskii. Local dynamics of equation with periodically distributed delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/