@article{TMF_2022_212_2_a7,
author = {I. S. Kashchenko and E. M. Glushevskii},
title = {Local dynamics of equation with periodically distributed delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {273--286},
year = {2022},
volume = {212},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/}
}
TY - JOUR AU - I. S. Kashchenko AU - E. M. Glushevskii TI - Local dynamics of equation with periodically distributed delay JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 273 EP - 286 VL - 212 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/ LA - ru ID - TMF_2022_212_2_a7 ER -
I. S. Kashchenko; E. M. Glushevskii. Local dynamics of equation with periodically distributed delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/
[1] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer, New York, 2009 | MR
[2] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer, Dordrecht, 1999 | DOI | MR
[3] A. S. Dmitriev, S. A. Kaschenko, “Dinamika generatora s zapazdyvayuschei obratnoi svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 34:12 (1989), 24–39
[4] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron, 16:3 (1980), 347–355 | DOI
[5] A. G. Vladimirov, D. V. Turaev, “Model for passive mode-locking in semiconductor lasers”, Phys. Rev. A, 72:3 (2005), 033808, 13 pp. | DOI
[6] J. H. Talla Mbé, A. F. Talla, G. R. G. Chengui, A. Coillet, L. Larger, P. Woafo, Y. K. Chembo, “Mixed-mode oscillations in slow-fast delay optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902, 6 pp. | DOI
[7] M. C. Mackey, L. Glass, “Oscillations and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI
[8] G. I. Marchuk, Matematicheskie metody v immunologii. Vychislitelnye metody i algoritmy, Nauka, M., 1991 | MR
[9] H. Haken, Brain Dinamics. Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer Series in Synergetics, Springer, Berlin, 2002 | MR
[10] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, LIBROKOM, M., 2009 | DOI | MR
[11] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984 | MR
[12] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl
[13] J. K. Hale, M. V. L. Sjoerd, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer, New York, 1993 | DOI | MR
[14] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165:4–6 (1999), 279–292 | DOI
[15] A. A. Kashchenko, “Relaxation modes of a system of diffusion coupled oscillators with delay”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105488, 10 pp. | DOI | MR
[16] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya, soderzhaschego zapazdyvanie”, Matem. zametki, 98:1 (2015), 85–100 | DOI | DOI | MR
[17] A. A. Kaschenko, “Relaksatsionnye tsikly v modeli dvukh slabo svyazannykh ostsillyatorov so znakoperemennoi zapazdyvayuschei obratnoi svyazyu”, TMF, 202:3 (2020), 437–446 | DOI | DOI | MR
[18] V. O. Golubenets, “Relaksatsionnye kolebaniya v logisticheskom uravnenii s nepostoyannym zapazdyvaniem”, Matem. zametki, 107:6 (2020), 833–847 | DOI | DOI | MR
[19] S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, “Temporal dissipative solitons in time-delay feedback systems”, Phys. Rev. Lett., 123:5 (2019), 053901, 6 pp., arXiv: 1901.03524 | DOI | MR
[20] L. Larger, B. Penkovsky, Y. Maistrenko, “Virtual chimera states for delayed-feedback systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI
[21] E. V. Grigoreva, S. A. Kaschenko, “Normalizovannye kraevye zadachi v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Izv. vuzov. PND, 28:4 (2020), 361–382 | DOI
[22] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenom. Complex Syst., 22:4 (2019), 407–412 | DOI
[23] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems”, Automatica, 39:10 (2003), 1667–1694 | DOI | MR
[24] L. Berezansky, E. Braverman, “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Math. Comput. Modelling, 48:1–2 (2008), 287–304 | DOI | MR
[25] V. V. Malygina, T. L. Sabatulina, “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2008, no. 8, 73–77 | DOI | MR | Zbl
[26] I. S. Kaschenko, “Lokalnaya dinamika uravneniya s raspredelennym zapazdyvaniem”, Differents. uravneniya, 50:1 (2014), 17–26 | DOI
[27] D. V. Glazkov, “Lokalnaya dinamika uravneniya vtorogo poryadka s bolshim eksponentsialno raspredelennym zapazdyvaniem i suschestvennym treniem”, Model. i analiz inform. sistem, 22:1 (2015), 65–73 | DOI | MR
[28] C.-U. Choe, R.-S. Kim, H. Jang, P. Hövel, E. Schöll, “Delayed-feedback control: arbitrary and distributed delay-time and noninvasive control of synchrony in networks with heterogeneous delays”, Internat. J. Dynam. Control., 2:1 (2014), 2–25 | DOI
[29] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR | Zbl | Zbl