Local dynamics of equation with periodically distributed delay
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 273-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study an equation with periodically distributed delay. The dependence of the equilibrium state stability on the parameters is investigated. We show that the stability region can have a complicated shape. For a long delay, we construct the asymptotic approximations of expressions for the stability region boundary in the parameter space. We construct the normal forms and determine the occurring bifurcations in the critical cases.
Keywords: delay, dynamics, asymptotics, normal form.
@article{TMF_2022_212_2_a7,
     author = {I. S. Kashchenko and E. M. Glushevskii},
     title = {Local dynamics of equation with periodically distributed delay},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {273--286},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/}
}
TY  - JOUR
AU  - I. S. Kashchenko
AU  - E. M. Glushevskii
TI  - Local dynamics of equation with periodically distributed delay
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 273
EP  - 286
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/
LA  - ru
ID  - TMF_2022_212_2_a7
ER  - 
%0 Journal Article
%A I. S. Kashchenko
%A E. M. Glushevskii
%T Local dynamics of equation with periodically distributed delay
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 273-286
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/
%G ru
%F TMF_2022_212_2_a7
I. S. Kashchenko; E. M. Glushevskii. Local dynamics of equation with periodically distributed delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 273-286. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a7/

[1] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer, New York, 2009 | MR

[2] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer, Dordrecht, 1999 | DOI | MR

[3] A. S. Dmitriev, S. A. Kaschenko, “Dinamika generatora s zapazdyvayuschei obratnoi svyazyu i nizkodobrotnym filtrom vtorogo poryadka”, Radiotekhnika i elektronika, 34:12 (1989), 24–39

[4] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron, 16:3 (1980), 347–355 | DOI

[5] A. G. Vladimirov, D. V. Turaev, “Model for passive mode-locking in semiconductor lasers”, Phys. Rev. A, 72:3 (2005), 033808, 13 pp. | DOI

[6] J. H. Talla Mbé, A. F. Talla, G. R. G. Chengui, A. Coillet, L. Larger, P. Woafo, Y. K. Chembo, “Mixed-mode oscillations in slow-fast delay optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902, 6 pp. | DOI

[7] M. C. Mackey, L. Glass, “Oscillations and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI

[8] G. I. Marchuk, Matematicheskie metody v immunologii. Vychislitelnye metody i algoritmy, Nauka, M., 1991 | MR

[9] H. Haken, Brain Dinamics. Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer Series in Synergetics, Springer, Berlin, 2002 | MR

[10] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, LIBROKOM, M., 2009 | DOI | MR

[11] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer, Berlin, 1984 | MR

[12] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl

[13] J. K. Hale, M. V. L. Sjoerd, Introduction to Functional-Differential Equations, Applied Mathematical Sciences, 99, Springer, New York, 1993 | DOI | MR

[14] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165:4–6 (1999), 279–292 | DOI

[15] A. A. Kashchenko, “Relaxation modes of a system of diffusion coupled oscillators with delay”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105488, 10 pp. | DOI | MR

[16] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya, soderzhaschego zapazdyvanie”, Matem. zametki, 98:1 (2015), 85–100 | DOI | DOI | MR

[17] A. A. Kaschenko, “Relaksatsionnye tsikly v modeli dvukh slabo svyazannykh ostsillyatorov so znakoperemennoi zapazdyvayuschei obratnoi svyazyu”, TMF, 202:3 (2020), 437–446 | DOI | DOI | MR

[18] V. O. Golubenets, “Relaksatsionnye kolebaniya v logisticheskom uravnenii s nepostoyannym zapazdyvaniem”, Matem. zametki, 107:6 (2020), 833–847 | DOI | DOI | MR

[19] S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, “Temporal dissipative solitons in time-delay feedback systems”, Phys. Rev. Lett., 123:5 (2019), 053901, 6 pp., arXiv: 1901.03524 | DOI | MR

[20] L. Larger, B. Penkovsky, Y. Maistrenko, “Virtual chimera states for delayed-feedback systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI

[21] E. V. Grigoreva, S. A. Kaschenko, “Normalizovannye kraevye zadachi v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Izv. vuzov. PND, 28:4 (2020), 361–382 | DOI

[22] I. S. Kashchenko, S. A. Kashchenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenom. Complex Syst., 22:4 (2019), 407–412 | DOI

[23] J.-P. Richard, “Time-delay systems: an overview of some recent advances and open problems”, Automatica, 39:10 (2003), 1667–1694 | DOI | MR

[24] L. Berezansky, E. Braverman, “Linearized oscillation theory for a nonlinear equation with a distributed delay”, Math. Comput. Modelling, 48:1–2 (2008), 287–304 | DOI | MR

[25] V. V. Malygina, T. L. Sabatulina, “Znakoopredelennost reshenii i ustoichivost lineinykh differentsialnykh uravnenii s peremennym raspredelennym zapazdyvaniem”, Izv. vuzov. Matem., 2008, no. 8, 73–77 | DOI | MR | Zbl

[26] I. S. Kaschenko, “Lokalnaya dinamika uravneniya s raspredelennym zapazdyvaniem”, Differents. uravneniya, 50:1 (2014), 17–26 | DOI

[27] D. V. Glazkov, “Lokalnaya dinamika uravneniya vtorogo poryadka s bolshim eksponentsialno raspredelennym zapazdyvaniem i suschestvennym treniem”, Model. i analiz inform. sistem, 22:1 (2015), 65–73 | DOI | MR

[28] C.-U. Choe, R.-S. Kim, H. Jang, P. Hövel, E. Schöll, “Delayed-feedback control: arbitrary and distributed delay-time and noninvasive control of synchrony in networks with heterogeneous delays”, Internat. J. Dynam. Control., 2:1 (2014), 2–25 | DOI

[29] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR | MR | Zbl | Zbl