Set-theoretical solutions of the  Zamolodchikov tetrahedron equation on associative rings and Liouville integrability
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 263-272 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to tetrahedron maps, which are set-theoretical solutions of the Zamolodchikov tetrahedron equation. We construct a family of tetrahedron maps on associative rings. The obtained maps are new to our knowledge. We show that matrix tetrahedron maps derived previously are a particular case of our construction. This provides an algebraic explanation of the fact that the matrix maps satisfy the tetrahedron equation. Also, Liouville integrability is established for some of the constructed maps.
Keywords: Zamolodchikov tetrahedron equation, associative ring, Liouville integrability.
Mots-clés : tetrahedron map
@article{TMF_2022_212_2_a6,
     author = {S. Igonin},
     title = {Set-theoretical solutions of the~ {Zamolodchikov} tetrahedron equation on associative rings and {Liouville} integrability},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {263--272},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a6/}
}
TY  - JOUR
AU  - S. Igonin
TI  - Set-theoretical solutions of the  Zamolodchikov tetrahedron equation on associative rings and Liouville integrability
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 263
EP  - 272
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a6/
LA  - ru
ID  - TMF_2022_212_2_a6
ER  - 
%0 Journal Article
%A S. Igonin
%T Set-theoretical solutions of the  Zamolodchikov tetrahedron equation on associative rings and Liouville integrability
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 263-272
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a6/
%G ru
%F TMF_2022_212_2_a6
S. Igonin. Set-theoretical solutions of the  Zamolodchikov tetrahedron equation on associative rings and Liouville integrability. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 263-272. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a6/

[1] A. B. Zamolodchikov, “Uravneniya tetraedrov i integriruemye sistemy v trekhmernom prostranstve”, ZhETF, 79:2(8) (1980), 641–664 | MR

[2] A. B. Zamolodchikov, “Tetrahedron equations and the relativistic $S$-matrix of straight-strings in $(2+1)$-dimensions”, Commun. Math. Phys., 79:4 (1981), 489–505 | DOI | MR

[3] V. V. Bazhanov, S. M. Sergeev, “Zamolodchikov's tetrahedron equation and hidden structure of quantum groups”, J. Phys. A: Math. Theor., 39:13 (2006), 3295–3310 | DOI | MR

[4] V. V. Bazhanov, V. V. Mangazeev, S. M. Sergeev, “Quantum geometry of three-dimensional lattices”, J. Stat. Mech., 2008, no. 7, P07004, 27 pp. | DOI | MR

[5] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, “Funktsionalnoe uravnenie tetraedrov”, TMF, 117:3 (1998), 370–384 | DOI | DOI | MR | Zbl

[6] P. Kassotakis, M. Nieszporski, V. Papageorgiou, A. Tongas, “Tetrahedron maps and symmetries of three dimensional integrable discrete equations”, J. Math. Phys., 60:12 (2019), 123503, 18 pp. | DOI | MR

[7] J. M. Maillet, F. Nijhoff, “The tetrahedron equation and the four-simplex equation”, Phys. Lett. A, 134:4 (1989), 221–228 | DOI | MR

[8] D. V. Talalaev, “Uravnenie tetraedrov: algebra, topologiya i integriruemost”, UMN, 76:4(460) (2021), 139–176 | DOI | DOI

[9] A. Doliwa, R. M. Kashaev, “Non-commutative birational maps satisfying Zamolodchikov equation, and Desargues lattices”, J. Math. Phys., 61:9 (2020), 092704, 23 pp. | DOI | MR

[10] S. Igonin, S. Konstantinou-Rizos, Algebraic and differential-geometric constructions of set-theoretical solutions to the Zamolodchikov tetrahedron equation, arXiv: 2110.05998

[11] I. G. Korepanov, G. I. Sharygin, D. V. Talalaev, “Cohomologies of $n$-simplex relations”, Math. Proc. Cambridge Philos. Soc., 161:2 (2016), 203–222 | DOI | MR

[12] A. Yoneyama, “Boundary from bulk integrability in three dimensions: 3D reflection maps from tetrahedron maps”, Math. Phys. Anal. Geom., 24 (2021), 21, 19 pp. | DOI | MR

[13] A. P. Fordy, “Periodic cluster mutations and related integrable maps”, J. Phys. A: Math. Theor., 47:47 (2014), 474003, 44 pp. | DOI | MR

[14] S. Konstantinou-Rizos, A. V. Mikhailov, “Darboux transformations, finite reduction groups and related Yang–Baxter maps”, J. Phys. A: Math. Theor., 46:42 (2013), 425201, 16 pp. | DOI | MR

[15] A. P. Veselov, “Integriruemye otobrazheniya”, UMN, 46:5(281) (1991), 3–45 | DOI | MR | Zbl

[16] S. M. Sergeev, “Solutions of the functional tetrahedron equation connected with the local Yang–Baxter equation for the ferro-electric condition”, Lett. Math. Phys., 45:2 (1998), 113–119 | DOI | MR