Toy model of a Boltzmann-type equation for the  contact
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 257-262 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The packing of hard-core particles in contact with their neighbors is considered as the simplest model of disordered particulate media. We formulate the statically determinate problem that allows analytic investigation of the statistical distribution of the contact force magnitude. A toy model of the Boltzmann-type equation for the contact force distribution probability is formulated and studied. An experimentally observed exponential distribution is derived.
Keywords: contact force distribution, Boltzmann equation, packings of particles.
@article{TMF_2022_212_2_a5,
     author = {D. V. Grinev},
     title = {Toy model of {a~Boltzmann-type} equation for the~ contact},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {257--262},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a5/}
}
TY  - JOUR
AU  - D. V. Grinev
TI  - Toy model of a Boltzmann-type equation for the  contact
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 257
EP  - 262
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a5/
LA  - ru
ID  - TMF_2022_212_2_a5
ER  - 
%0 Journal Article
%A D. V. Grinev
%T Toy model of a Boltzmann-type equation for the  contact
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 257-262
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a5/
%G ru
%F TMF_2022_212_2_a5
D. V. Grinev. Toy model of a Boltzmann-type equation for the  contact. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 257-262. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a5/

[1] A. J. Liu, S. R. Nagel (eds.), Jamming and Rheology: Constrained Dynamics on Microscopic Scales, Taylor and Francis, London, 2001 | DOI

[2] H. J. Herrmann, J.-P. Hovi, S. Luding (eds.), Physics of Dry Granular Media, Proceedings of the NATO Advanced Study Institute Summer School (Cargèse, September 15–26, 1997), NATO Science Series E: Applied Sciences, 350, Kluwer, Dordrecht, 1998 | DOI | MR

[3] A. Baule, F. Morone, H. J. Herrmann, H. A. Makse, “Edwards statistical mechanics for jammed granular matter”, Rev. Modern Phys., 90:1 (2018), 015006, 58 pp. | DOI | MR

[4] C.-H. Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, T. A. Witten, “Force fluctuations in bead packs”, Science, 269:5223 (1995), 513–515 | DOI

[5] C. Thornton, S. J. Antony, “Quasi-static deformation of particulate media”, Phil. Trans. Roy. Soc. A, 356:1747 (1998), 2763–2782 | DOI

[6] J. Sartor, Using force networks to better understand granular materials, Ph. D. Thesis, University of Oregon, Oregon, USA, 2021

[7] S. F. Edwards, D. V. Grinev, “Statistical mechanics of stress transmission in disordered granular arrays”, Phys. Rev. Lett., 82:26 (1999), 5397–5400, arXiv: cond-mat/9905092 | DOI

[8] R. C. Ball, D. V. Grinev, “The stress transmission universality classes of periodic granular arrays”, Phys. A, 292:1 (2001), 167–174, arXiv: cond-mat/9810124 | DOI

[9] R. C. Ball, R. Blumenfeld, “Stress field in granular systems: loop forces and potential formulation”, Phys. Rev. Lett., 88:11 (2002), 115505, 4 pp. | DOI

[10] K. Bagi, “Analysis of micro-variables through entropy principle”, Powders Grains 97, Proceedings of the 3rd International Conference on Powders and Grains (Durham, North Carolina, 18–23 May, 1997), eds. R. P. Behringer, J. T. Jenkins, Balkema, Rotterdam, 1997, 251–254

[11] A. H. W. Ngan, “Mechanical analog of temperature for the description of force distribution in static granular packings”, Phys. Rev. E, 68:1 (2003), 011301, 10 pp. | DOI

[12] N. P. Kruyt, L. Rothenburg, “Probability density functions of contact forces for cohesionless frictional granular materials”, Internat. J. Solids Struct., 39:3 (2002), 571–583 | DOI