@article{TMF_2022_212_2_a4,
author = {V. E. Goryunov},
title = {Dynamics of solutions of logistic equation with delay and diffusion in a~planar domain},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {234--256},
year = {2022},
volume = {212},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/}
}
TY - JOUR AU - V. E. Goryunov TI - Dynamics of solutions of logistic equation with delay and diffusion in a planar domain JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 234 EP - 256 VL - 212 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/ LA - ru ID - TMF_2022_212_2_a4 ER -
V. E. Goryunov. Dynamics of solutions of logistic equation with delay and diffusion in a planar domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 234-256. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/
[1] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. Sci., 50:4 (1948), 221–246 | DOI
[2] E. M. Wright, “A non-linear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | DOI | MR
[3] J. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer, New York, 1977 | MR
[4] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t) = [A - By(t - \tau)]y(t)$”, Contributions to the Theory of Nonlinear Oscillations, v. IV, Annals of Mathematics Studies, 41, Princeton Univ. Press, Princeton, NJ, 1958, 1–18 | DOI | MR
[5] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61 | DOI
[6] S. D. Glyzin, A. Yu. Kolesov, Lokalnye metody analiza dinamicheskikh sistem: uchebnoe posobie, Yarosl. gos. un-t, Yaroslavl, 2006
[7] Yu. S. Kolesov, D. I. Shvitra, Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR
[8] Yu. S. Kolesov, V. V. Maiorov, “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 10:10 (1974), 1778–1788 | MR | Zbl
[9] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[10] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI No 1901-85, Yaroslavl, 1985
[11] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1990 | MR
[12] S. Glyzin, V. Goryunov, A. Kolesov, “Spatially inhomogeneous modes of logistic differential equation with delay and small diffusion in a flat area”, Lobachevskii J. Math., 38:5 (2017), 898–905 | DOI | MR
[13] A. M. Zhabotinsky, A. N. Zaikin, “Autowave processes in a distributed chemical system”, J. Theoretical Biology, 40:1 (1973), 45–61 | DOI
[14] S. A. Kaschenko, V. E. Frolov, “Asimptotika ustanovivshikhsya rezhimov konechno-raznostnykh approksimatsii logisticheskogo uravneniya s zapazdyvaniem i s maloi diffuziei”, Model. i analiz inform. sistem, 21:1 (2014), 94–114 | DOI
[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Konechnomernye modeli diffuzionnogo khaosa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 860–875 | DOI
[16] S. D. Glyzin, “Razmernostnye kharakteristiki diffuzionnogo khaosa”, Model. i analiz inform. sistem, 20:1 (2013), 30–51 | DOI
[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diffuzionnyi khaos i ego invariantnye chislovye kharakteristiki”, TMF, 203:1 (2020), 10–25 | DOI | DOI