Dynamics of solutions of logistic equation with delay and diffusion in a planar domain
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 234-256 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a boundary value problem based on a logistic model with delay and diffusion describing the dynamics of changes in the population density in a planar domain. It has spatially inhomogeneous stable solutions branching off from a spatially homogeneous solution and sharing qualitatively the same dynamical properties. We numerically investigate their phase bifurcations with a significant decrease in the diffusion coefficient. The coexisting stable modes with qualitatively different properties are also constructed numerically. Based on the applied numerical and analytic methods, the solutions of the considered boundary value problem are divided into two types, the first of which includes solutions that inherit the properties of the homogeneous solution and the second includes the so-called self-organization modes. Solutions of the second type are more intricately distributed in space and have properties much more preferable from the standpoint of population dynamics.
Keywords: logistic equation with delay, numerical analysis, self-organization, spiral wave.
@article{TMF_2022_212_2_a4,
     author = {V. E. Goryunov},
     title = {Dynamics of solutions of logistic equation with delay and diffusion in a~planar domain},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--256},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/}
}
TY  - JOUR
AU  - V. E. Goryunov
TI  - Dynamics of solutions of logistic equation with delay and diffusion in a planar domain
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 234
EP  - 256
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/
LA  - ru
ID  - TMF_2022_212_2_a4
ER  - 
%0 Journal Article
%A V. E. Goryunov
%T Dynamics of solutions of logistic equation with delay and diffusion in a planar domain
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 234-256
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/
%G ru
%F TMF_2022_212_2_a4
V. E. Goryunov. Dynamics of solutions of logistic equation with delay and diffusion in a planar domain. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 234-256. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a4/

[1] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. Sci., 50:4 (1948), 221–246 | DOI

[2] E. M. Wright, “A non-linear difference-differential equation”, J. Reine Angew. Math., 194 (1955), 66–87 | DOI | MR

[3] J. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer, New York, 1977 | MR

[4] S. Kakutani, L. Markus, “On the non-linear difference-differential equation $y'(t) = [A - By(t - \tau)]y(t)$”, Contributions to the Theory of Nonlinear Oscillations, v. IV, Annals of Mathematics Studies, 41, Princeton Univ. Press, Princeton, NJ, 1958, 1–18 | DOI | MR

[5] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61 | DOI

[6] S. D. Glyzin, A. Yu. Kolesov, Lokalnye metody analiza dinamicheskikh sistem: uchebnoe posobie, Yarosl. gos. un-t, Yaroslavl, 2006

[7] Yu. S. Kolesov, D. I. Shvitra, Avtokolebaniya v sistemakh s zapazdyvaniem, Mokslas, Vilnyus, 1979 | MR

[8] Yu. S. Kolesov, V. V. Maiorov, “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 10:10 (1974), 1778–1788 | MR | Zbl

[9] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[10] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI No 1901-85, Yaroslavl, 1985

[11] E. Khairer, S. Nersett, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1990 | MR

[12] S. Glyzin, V. Goryunov, A. Kolesov, “Spatially inhomogeneous modes of logistic differential equation with delay and small diffusion in a flat area”, Lobachevskii J. Math., 38:5 (2017), 898–905 | DOI | MR

[13] A. M. Zhabotinsky, A. N. Zaikin, “Autowave processes in a distributed chemical system”, J. Theoretical Biology, 40:1 (1973), 45–61 | DOI

[14] S. A. Kaschenko, V. E. Frolov, “Asimptotika ustanovivshikhsya rezhimov konechno-raznostnykh approksimatsii logisticheskogo uravneniya s zapazdyvaniem i s maloi diffuziei”, Model. i analiz inform. sistem, 21:1 (2014), 94–114 | DOI

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Konechnomernye modeli diffuzionnogo khaosa”, Zh. vychisl. matem. i matem. fiz., 50:5 (2010), 860–875 | DOI

[16] S. D. Glyzin, “Razmernostnye kharakteristiki diffuzionnogo khaosa”, Model. i analiz inform. sistem, 20:1 (2013), 30–51 | DOI

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diffuzionnyi khaos i ego invariantnye chislovye kharakteristiki”, TMF, 203:1 (2020), 10–25 | DOI | DOI