Periodic two-cluster synchronization modes in fully coupled
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.
Keywords: fully coupled network of nonlinear oscillators, periodic two-cluster synchronization modes, asymptotics, stability, buffering.
@article{TMF_2022_212_2_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Periodic two-cluster synchronization modes in fully coupled},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--233},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Periodic two-cluster synchronization modes in fully coupled
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 213
EP  - 233
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/
LA  - ru
ID  - TMF_2022_212_2_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Periodic two-cluster synchronization modes in fully coupled
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 213-233
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/
%G ru
%F TMF_2022_212_2_a3
S. D. Glyzin; A. Yu. Kolesov. Periodic two-cluster synchronization modes in fully coupled. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/

[1] Y. Kuramoto, D. Battogtokh, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385, arXiv: cond-mat/0210694

[2] D. M. Abrams, S. H. Strogatz, “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp., arXiv: nlin/0407045 | DOI

[3] M. J. Panaggio, D. M. Abrams, “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67–R87 | DOI | MR

[4] G. C. Sethia, A. Sen, “Chimera states: the existence criteria revisited”, Phys. Rev. Lett., 112:14 (2014), 144101, 5 pp., arXiv: 1312.2682 | DOI

[5] L. Schmidt, K. Krischer, “Clustering as a prerequisite for chimera states in globally coupled systems”, Phys. Rev. Lett., 114:3 (2015), 034101, 5 pp., arXiv: 1409.1479 | DOI

[6] C. R. Laing, “Chimeras in networks with purely local coupling”, Phys. Rev. E, 92:5 (2015), 050904, 5 pp., arXiv: 1506.05871 | DOI

[7] C. R. Laing, “Chimeras in networks of planar oscillators”, Phys. Rev. E, 81:6 (2010), 066221, 4 pp., arXiv: 1006.4413 | DOI | MR

[8] A. Zakharova, M. Kapeller, E. Schöll, “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp., arXiv: 1402.0348 | DOI

[9] I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, “Nonlinearity of local dynamics promotes multi-chimeras”, Chaos, 25:8 (2015), 083104, 8 pp. | DOI | MR

[10] I. Omelchenko, O. E. Omel'chenko, P. Hövel, E. Schöll, “When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101, 5 pp., arXiv: 1212.3190 | DOI

[11] H. Sakaguchi, “Instability of synchronized motion in nonlocally coupled neural oscillators”, Phys. Rev. E, 73:3 (2006), 031907, 7 pp., arXiv: q-bio/0602026 | DOI | MR

[12] J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, “Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models”, Internat. J. Bifur. Chaos, 24:3 (2014), 1450030, 9 pp. | DOI | MR

[13] A. Zakharova, Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay, Springer, Cham, 2020 | DOI | MR

[14] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | DOI | MR | Zbl

[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh gennykh setyakh”, Differents. uravneniya, 52:2 (2016), 157–176 | DOI | DOI

[16] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. Chua, Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Izhevskii in-t kompyuternykh issledovanii, M., Izhevsk, 2004 | MR | Zbl

[17] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[18] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR

[19] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR

[20] L. A. Low, P. G. Reinhall, D. W. Storti, “An investigation of coupled van der Pol oscillators”, J. Vib. Acoust., 125:2 (2003), 162–169 | DOI

[21] L. A. Low, P. G. Reinhall, D. W. Storti, E. B. Goldman, “Coupled van der Pol oscillators as a simplified model for generation of neural patterns for jellyfish locomotion”, Struct. Control Health Monit., 13:1 (2006), 417–429 | DOI