Periodic two-cluster synchronization modes in fully coupled
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.
Keywords:
fully coupled network of nonlinear oscillators, periodic two-cluster synchronization modes, asymptotics, stability, buffering.
@article{TMF_2022_212_2_a3,
author = {S. D. Glyzin and A. Yu. Kolesov},
title = {Periodic two-cluster synchronization modes in fully coupled},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {213--233},
publisher = {mathdoc},
volume = {212},
number = {2},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov TI - Periodic two-cluster synchronization modes in fully coupled JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 213 EP - 233 VL - 212 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/ LA - ru ID - TMF_2022_212_2_a3 ER -
S. D. Glyzin; A. Yu. Kolesov. Periodic two-cluster synchronization modes in fully coupled. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/