@article{TMF_2022_212_2_a3,
author = {S. D. Glyzin and A. Yu. Kolesov},
title = {Periodic two-cluster synchronization modes in fully coupled},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {213--233},
year = {2022},
volume = {212},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/}
}
S. D. Glyzin; A. Yu. Kolesov. Periodic two-cluster synchronization modes in fully coupled. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/
[1] Y. Kuramoto, D. Battogtokh, “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenom. Complex Syst., 5:4 (2002), 380–385, arXiv: cond-mat/0210694
[2] D. M. Abrams, S. H. Strogatz, “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102, 4 pp., arXiv: nlin/0407045 | DOI
[3] M. J. Panaggio, D. M. Abrams, “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67–R87 | DOI | MR
[4] G. C. Sethia, A. Sen, “Chimera states: the existence criteria revisited”, Phys. Rev. Lett., 112:14 (2014), 144101, 5 pp., arXiv: 1312.2682 | DOI
[5] L. Schmidt, K. Krischer, “Clustering as a prerequisite for chimera states in globally coupled systems”, Phys. Rev. Lett., 114:3 (2015), 034101, 5 pp., arXiv: 1409.1479 | DOI
[6] C. R. Laing, “Chimeras in networks with purely local coupling”, Phys. Rev. E, 92:5 (2015), 050904, 5 pp., arXiv: 1506.05871 | DOI
[7] C. R. Laing, “Chimeras in networks of planar oscillators”, Phys. Rev. E, 81:6 (2010), 066221, 4 pp., arXiv: 1006.4413 | DOI | MR
[8] A. Zakharova, M. Kapeller, E. Schöll, “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101, 5 pp., arXiv: 1402.0348 | DOI
[9] I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, “Nonlinearity of local dynamics promotes multi-chimeras”, Chaos, 25:8 (2015), 083104, 8 pp. | DOI | MR
[10] I. Omelchenko, O. E. Omel'chenko, P. Hövel, E. Schöll, “When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101, 5 pp., arXiv: 1212.3190 | DOI
[11] H. Sakaguchi, “Instability of synchronized motion in nonlocally coupled neural oscillators”, Phys. Rev. E, 73:3 (2006), 031907, 7 pp., arXiv: q-bio/0602026 | DOI | MR
[12] J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, “Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models”, Internat. J. Bifur. Chaos, 24:3 (2014), 1450030, 9 pp. | DOI | MR
[13] A. Zakharova, Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay, Springer, Cham, 2020 | DOI | MR
[14] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | DOI | MR | Zbl
[15] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh gennykh setyakh”, Differents. uravneniya, 52:2 (2016), 157–176 | DOI | DOI
[16] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. Chua, Metody kachestvennoi teorii v nelineinoi dinamike, Ch. 1, Izhevskii in-t kompyuternykh issledovanii, M., Izhevsk, 2004 | MR | Zbl
[17] A. Yu. Kolesov, N. Kh. Rozov, Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[18] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR
[19] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005 | MR
[20] L. A. Low, P. G. Reinhall, D. W. Storti, “An investigation of coupled van der Pol oscillators”, J. Vib. Acoust., 125:2 (2003), 162–169 | DOI
[21] L. A. Low, P. G. Reinhall, D. W. Storti, E. B. Goldman, “Coupled van der Pol oscillators as a simplified model for generation of neural patterns for jellyfish locomotion”, Struct. Control Health Monit., 13:1 (2006), 417–429 | DOI