Periodic two-cluster synchronization modes in fully coupled
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider special systems of ordinary differential equations, the so-called fully coupled networks of nonlinear oscillators. For a given class of systems, we propose methods that allow examining problems of the existence and stability of periodic two-cluster synchronization modes. For any of these modes, the set of oscillators falls into two disjoint classes. Within these classes, complete synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously.
Keywords: fully coupled network of nonlinear oscillators, periodic two-cluster synchronization modes, asymptotics, stability, buffering.
@article{TMF_2022_212_2_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov},
     title = {Periodic two-cluster synchronization modes in fully coupled},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--233},
     publisher = {mathdoc},
     volume = {212},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Periodic two-cluster synchronization modes in fully coupled
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 213
EP  - 233
VL  - 212
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/
LA  - ru
ID  - TMF_2022_212_2_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Periodic two-cluster synchronization modes in fully coupled
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 213-233
%V 212
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/
%G ru
%F TMF_2022_212_2_a3
S. D. Glyzin; A. Yu. Kolesov. Periodic two-cluster synchronization modes in fully coupled. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a3/