Real Hamiltonian forms of affine Toda field theories: Spectral aspects
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 190-212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to real Hamiltonian forms of $2$-dimensional Toda field theories related to exceptional simple Lie algebras, and to the spectral theory of the associated Lax operators. Real Hamiltonian forms are a special type of “reductions” of Hamiltonian systems, similar to real forms of semisimple Lie algebras. Examples of real Hamiltonian forms of affine Toda field theories related to exceptional complex untwisted affine Kac–Moody algebras are studied. Along with the associated Lax representations, we also formulate the relevant Riemann–Hilbert problems and derive the minimal sets of scattering data that uniquely determine the scattering matrices and the potentials of the Lax operators.
Keywords: real Hamiltonian form, 2-dimensional Toda field theory, spectral properties of Lax operators.
Mots-clés : exceptional Lie algebras
@article{TMF_2022_212_2_a2,
     author = {V. S. Gerdjikov and G. G. Grahovski and A. A. Stefanov},
     title = {Real {Hamiltonian} forms of affine {Toda} field theories: {Spectral} aspects},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {190--212},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a2/}
}
TY  - JOUR
AU  - V. S. Gerdjikov
AU  - G. G. Grahovski
AU  - A. A. Stefanov
TI  - Real Hamiltonian forms of affine Toda field theories: Spectral aspects
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 190
EP  - 212
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a2/
LA  - ru
ID  - TMF_2022_212_2_a2
ER  - 
%0 Journal Article
%A V. S. Gerdjikov
%A G. G. Grahovski
%A A. A. Stefanov
%T Real Hamiltonian forms of affine Toda field theories: Spectral aspects
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 190-212
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a2/
%G ru
%F TMF_2022_212_2_a2
V. S. Gerdjikov; G. G. Grahovski; A. A. Stefanov. Real Hamiltonian forms of affine Toda field theories: Spectral aspects. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 190-212. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a2/

[1] A. V. Mikhailov, M. A. Olshanetsky, A. M. Perelomov, “Two-dimensional generalized Toda lattice”, Commun. Math. Phys., 79:4 (1981), 473–488 | DOI | MR

[2] H. W. Braden, E. Corrigan, P. E. Dorey, R. Sasaki, “Affine Toda field theory and exact $S$-matrices”, Nucl. Phys. B, 338:3 (1990), 689–746 ; “Multiple poles and other features of affine Toda field theory”, 356:2 (1991), 469–498 | DOI | MR | DOI | MR

[3] D. I. Olive, N. Turok, J. W. R. Underwood, “Solitons and the energy-momentum tensor for affine Toda theory”, Nucl. Phys. B, 401:3 (1993), 663–697 | DOI | MR

[4] D. I. Olive, N. Turok, J. W. R. Underwood, “Affine Toda solitons and vertex operators”, Nucl. Phys. B, 409:3 (1993), 509–546, arXiv: hep-th/9305160 | DOI | MR

[5] O. Babelon, D. Bernard, M. Talon, Introduction to Classical Integrable Systems, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[6] A. B. Zamolodchikov, “Integrals of motion and $S$-matrix of the (scaled) $T=c$ Ising model with magnetic field”, Internat. J. Modern Phys. A, 4:16 (1989), 4235–4248 | DOI | MR

[7] M. Adler, P. van Moerbeke, P. Vanhaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer, Berlin, 2004 | DOI | MR

[8] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR

[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | MR | Zbl

[10] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR

[11] V. S. Gerdjikov, “Generalised Fourier transforms for the soliton equations. Gauge covariant formulation”, Inverse Problems, 2:1 (1986), 51–74 | DOI | MR

[12] V. S. Gerdjikov, A. B.Yanovski, “Completeness of the eigenfunctions for the Caudrey–Beals–Coifman system”, J. Math. Phys., 35:7 (1994), 3687–3725 | DOI | MR

[13] V. S. Gerdjikov, G. Vilasi, A. B. Yanovski (eds.), Integrable Hamiltonian Hierarchies. Spectral and Geometric Methods, Lecture Notes in Physics, 748, Springer, Berlin, 2008 | DOI | MR | Zbl

[14] V. S. Gerdjikov, G. G. Grahovski, A. V. Mikhailov, T. I. Valchev, “Polynomial bundles and generalised Fourier transforms for integrable equations on A.III-type symmetric spaces”, SIGMA, 7 (2011), 096, 48 pp. | DOI | MR

[15] G. G. Grahovski, M. Condon, “On the Caudrey–Beals–Coifman system and the gauge group action”, J. Nonlinear Math. Phys., 15, suppl. 3 (2008), 197–208 ; G. G. Grahovski, “The generalised Zakharov–Shabat system and the gauge group action”, J. Math. Phys., 53:7 (2012), 073512, 13 pp., arXiv: 1109.5108 | DOI | MR | DOI | MR

[16] G. G. Grahovski, “On the reductions and scattering data for the CBC system”, Geometry, Integrability and Quantization (Varna, Bulgaria, September 1–10, 2001), v. 3, eds. I. M. Mladenov, L. N. Naber, Coral Press Sci., Sofia, 2002, 262–277 ; “On the reductions and scattering data for the generalized Zakharov–Shabat systems”, Nonlinear Physics: Theory and Experiment. II (Gallipoli, Italy, 27 June–6 July, 2002), eds. M. J. Ablowitz, M. Boiti, F. Pempinelli, B. Prinari, World Sci., Singapore, 2003, 71–78 | DOI | MR | Zbl | DOI | MR

[17] N. Burbaki, Gruppy i algebry Li. Gl. IV-VI, Elementy matematiki, Mir, M., 1972 | MR

[18] A. V. Mikhailov, “The reduction problem and the inverse scattering method”, Phys. D, 3:1–2 (1981), 73–117 | DOI

[19] S. P. Khastgir, R. Sasaki, “Instability of solitons in imaginary coupling affine Toda field theory”, Progr. Theor. Phys., 95:3 (1996), 485–501, arXiv: ; “Non-canonical folding of Dynkin diagrams and reduction of affine Toda theories”, 503–518, arXiv: hep-th/9507001hep-th/9512158 | DOI | MR | DOI | MR

[20] S. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial Press, M., 2005 | MR | Zbl

[21] V. S. Gerdjikov, A. Kyuldjiev, G. Marmo, G. Vilasi, “Complexifications and real forms of Hamiltonian structures”, Eur. Phys. J. B, 29:2 (2002), 177–181 ; “Real Hamiltonian forms of Hamiltonian systems”, 38:4 (2004), 635–649, arXiv: nlin/0310005 | DOI | MR | DOI | MR

[22] V. S. Gerdjikov, G. G. Grahovski, “On reductions and real Hamiltonian forms of affine Toda field theories”, J. Nonlinear Math. Phys., 12, suppl. 2 (2005), 153–168 ; “Real Hamiltonian forms of affine Toda models related to exceptional Lie algebras”, SIGMA, 2 (2006), 022, 11 pp. | DOI | MR | DOI | MR | Zbl

[23] V. G. Kats, Beskonechnomernye algebry Li, Mir, M., 1993 | DOI | MR | MR | Zbl

[24] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | DOI | MR | MR | Zbl

[25] X. Xu, Kac–Moody Algebras and Their Representations, Mathematics Monograph Series, 5, Science Press, Beijing, 2006; Representations of Lie Algebras and Partial Differential Equations, Springer Nature, Singapore, 2017 | MR

[26] R. Carter, Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics, 96, Cambridge Univ. Press, Cambridge, 2005 | DOI | MR

[27] J. M. Evans, “Complex Toda theories and twisted reality conditions”, Nucl. Phys. B, 390:1 (1993), 225–250 | DOI | MR

[28] J. M. Evans, J. O. Madsen, “On the classification of real forms of non-Abelian Toda theories and $W$-algebras”, Nucl. Phys. B, 536:3 (1999), 657–703, arXiv: hep-th/9802201 | DOI | MR

[29] J. M. Evans, J. O. Madsen, “Real form of non-Abelian Toda theories and their $W$-algebras”, Phys. Lett. B, 384:1–4 (1996), 131–139, arXiv: hep-th/9605126 | DOI | MR

[30] V. S. Gerdjikov, A. B. Yanovski, “CBC systems with Mikhailov reductions by Coxeter automorphism: I. Spectral theory of the recursion operators”, Stud. Appl. Math., 134:2 (2015), 145–180 | DOI | MR

[31] V. S. Gerdjikov, A. B. Yanovski, “On soliton equations with $\mathbb{Z}_{h}$ and $\mathbb{D}_{h}$ reductions: conservation laws and generating operators”, J. Geom. Symmetry Phys., 31 (2013), 57–92 | DOI | MR | Zbl

[32] V. S. Gerdjikov, “Nonlinear evolution equations related to Kac–Moody algebras $A_r^{(1)}$. Spectral aspects”, In press, Turkish J. Math., 46:SI-2 (2022), 1828–1844 | DOI

[33] V. G. Drinfeld, V. V. Sokolov, “Uravneniya tipa Kortevega–de Friza i prostye algebry Li”, Dokl. AN SSSR, 258:1 (1981), 11–16 | MR | Zbl

[34] R. B. Howlett, L. J. Rylands, D. E. Taylor, “Matrix generators for exceptional groups of Lie type”, J. Symbolic Comput., 31:4 (2000), 429–445 | DOI | MR

[35] R. Beals, R. R. Coifman, “Scattering and inverse scattering for first order systems”, Commun. Pure Appl. Math., 37:1 (1984), 39–90 ; “Inverse scattering and evolution equations”, 38:1 (1985), 29–42 | DOI | MR | DOI | MR

[36] V. S. Gerdjikov, “Algebraic and analytic aspects of $N$-wave type equations”, The Legacy of the Inverse Scattering Transform in Applied Mathematics (South Hadley, June 17–21, 2001), Contemporary Mathematics, 301, eds. J. Bona, R. Choudhury, D. Kaup, AMS, Providence, RI, 2002, 35–68 | DOI | MR | Zbl

[37] V. S. Gerdjikov, A. B. Yanovski, “Riemann–Hilbert problems, families of commuting operators and soliton equations”, J. Phys.: Conf. Ser., 482 (2014), 012017, 11 pp. | DOI

[38] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. anal. i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[39] V. S. Gerdjikov, “$\mathbb{Z}_N$-reductions and new integrable versions of derivative nonlinear Schrödinger equations”, Nonlinear Evolution Equations: Integrability and Spectral Methods, eds. A. Degasperis, A. P. Fordy, M. Lakshmanan, Manchester Univ. Press, Manchester, UK, 1981, 367–379

[40] V. S. Gerdjikov, “Derivative nonlinear Schrödinger equations with ${\mathbb Z}_N$ and $\mathbb D_N $-reductions”, Romanian J. Phys., 58:5–6 (2013), 573–582 | MR

[41] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “MKdV-type of equations related to $B_{2}^{(1)}$ and $A_{4}^{(2)}$ algebra”, Nonlinear Mathematical Physics and Natural Hazards (Sofia, Bulgaria, 28 November – 02 December, 2013), Springer Proceedings in Physics, 163, eds. B. Aneva, M. Kouteva-Guentcheva, Springer, Cham, 2014, 59–69 | DOI

[42] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “Integrable equations and recursion operators related to the affine Lie algebras $A^{(1)}_r$”, J. Math. Phys., 56:5 (2015), 052702, 18 pp., arXiv: 1411.0273 | DOI | MR

[43] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “On mKdV equations related to the affine Kac–Moody algebra $A^{(2)}_{5}$”, J. Geom. Symmetry Phys., 39 (2015), 17–31 | DOI | MR | Zbl

[44] V. S. Gerdjikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “MKdV-type of equations related to $\mathfrak{sl}(N,\mathbb{C})$ algebra”, Mathematics in Industry, ed. A. Slavova, Cambridge Scholar Publ., Cambridge, 2015, 335–344; “On an one-parameter family of MKdV equations related to the $\mathfrak{so}(8)$ Lie algebra”, 345–354

[45] V. S. Gerdzhikov, D. M. Mladenov, A. A. Stefanov, S. K. Varbev, “Uravneniya tipa modifitsirovannogo uravneniya Kortevega–de Friza, svyazannye s algebrami Katsa–Mudi $A_5^{(1)}$ i $A_5^{(2)}$”, TMF, 207:2 (2021), 237–260 | DOI | DOI

[46] Z. Zhu, D. G. Caldi, “Multi-soliton solutions of affine Toda models”, Nucl. Phys. B, 436:3 (1995), 659–678, arXiv: hep-th/9307175 | DOI | MR

[47] V. Caudrelier, Q. C. Zhang, “Yang–Baxter and reflection maps from vector solitons with a boundary”, Nonlinearity, 27:6 (2014), 1081–1103 ; J. Avan, V. Caudrelier, N. Crampé, “From Hamiltonian to zero curvature formulation for classical integrable boundary conditions”, J. Phys. A: Math. Theor, 51:30 (2018), 30LT01, 13 pp. | DOI | MR | DOI | MR

[48] A. Doikou, “$A_n^{(1)}$ affine Toda field theories with integrable boundary conditions revisited”, JHEP, 05 (2008), 091, 27 pp. ; J. Avan, A. Doikou, “Boundary Lax pairs for the $A_n^{(1)}$ Toda field theories”, Nucl. Phys. B, 821:3 (2009), 481–505 | DOI | DOI | MR

[49] A. Doikou, “Jumps and twists in affine Toda field theories”, Nucl. Phys. B, 893 (2015), 107–121, arXiv: 1407.7777 | DOI | MR

[50] A. Yanovski, “Recursion operators and expansions over adjoint solutions for the Caudrey–Beals–Coifman system with $\mathbb{Z}_p$ reductions of Mikhailov type”, J. Geom. Symmetry Phys., 30 (2013), 105–120 | DOI | MR

[51] A. B. Yanovski, G. Vilasi, “Geometric theory of the recursion operators for the generalized Zakharov–Shabat system in pole gauge on the algebra $sl(n,\mathbb{C})$ with and without reductions”, SIGMA, 8 (2012), 087, 23 pp. | DOI | MR