Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 179-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a singularly perturbed periodic problem for a Burgers-type equation with modular advection and periodic linear amplification. We obtain conditions for the existence, uniqueness, and asymptotic stability in the sense of Lyapunov of a periodic solution with an interior transition layer and construct its asymptotic approximation. The asymptotics of the solution is used to determine boundary conditions ensuring the implementation of a prescribed mode of the front motion, i.e., the boundary control problem. We also formulate the notion of an asymptotic solution of the boundary control problem and obtain sufficient conditions for the existence of the required periodic mode of the front motion.
Keywords: singularly perturbed parabolic equations, periodic problem, contrast structure, interior layer, moving front, asymptotic methods, differential inequalities, asymptotic stability in the sense of Lyapunov, Burgers equations with modular advection, boundary control problem, asymptotic solution of boundary control problem.
Mots-clés : reaction–diffusion–advection equations
@article{TMF_2022_212_2_a1,
     author = {V.T. Volkov and N. N. Nefedov},
     title = {Boundary control of fronts in {a~Burgers-type} equation with modular adhesion and periodic amplification},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--189},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a1/}
}
TY  - JOUR
AU  - V.T. Volkov
AU  - N. N. Nefedov
TI  - Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 179
EP  - 189
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a1/
LA  - ru
ID  - TMF_2022_212_2_a1
ER  - 
%0 Journal Article
%A V.T. Volkov
%A N. N. Nefedov
%T Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 179-189
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a1/
%G ru
%F TMF_2022_212_2_a1
V.T. Volkov; N. N. Nefedov. Boundary control of fronts in a Burgers-type equation with modular adhesion and periodic amplification. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 179-189. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a1/

[1] J. M. Burgers, “A mathematical model illustrating the theory of turbulence”, Advances in Applied Mechanics, 1, eds. R. von Mises, T. von Kármán, Academic Press, New York, 1948, 171–199 | DOI | MR

[2] O. V. Rudenko, “Linearizuemoe uravnenie dlya voln v dissipativnykh sredakh s modulnoi, kvadratichnoi i kvadratichno-kubichnoi nelineinostyami”, Dokl. RAN, 471:1 (2016), 23–27 | DOI

[3] O. V. Rudenko, “Modulnye solitony”, Dokl. RAN, 471:6 (2016), 451–454 | Zbl

[4] N. N. Nefedov, O. V. Rudenko, “O dvizhenii fronta v uravnenii tipa Byurgersa s kvadratichnoi i modulnoi nelineinostyu pri nelineinom usilenii”, Dokl. RAN, 478:3 (2018), 274–279 | DOI | MR | Zbl

[5] N. N. Nefedov, O. V. Rudenko, “O dvizhenii, usilenii i razrushenii frontov v uravneniyakh tipa Byurgersa s kvadratichnoi modulnoi nelineinostyu”, Dokl. RAN, 493:1 (2020), 26–31 | DOI

[6] N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers” (Lozenetz, Bulgaria, June 15–20, 2012), Lecture Notes in Computer Science, 8236, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Berlin, 2013, 62–72 | DOI | MR | Zbl

[7] A. Tikhonov, “O zavisimosti reshenii differentsialnykh uravnenii ot malogo parametra”, Matem. sb., 22(64):2 (1948), 193–204 | MR | Zbl

[8] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[9] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advektsiya: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[10] L. D. Akulenko, Asimptoticheskie metody optimalnogo upravleniya, Nauka, M., 1987 | MR | Zbl

[11] N. Nefedov, L. Recke, K. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR

[12] N. Nefedov, “The existence and asymptotic stability of periodic solutions with an interior layer of Burgers type equations with modular advection”, Math. Model. Nat. Phenom., 14:4 (2019), 401, 14 pp. | DOI | MR

[13] V. Volkov, D. Lukyanenko, N. Nefedov, “Asymptotic-numerical method for the location and dynamics of internal layers in singular perturbed parabolic problems”, Numerical Analysis and Its Applications (Lozenetz, Bulgaria, June 15–22, 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Cham, 2017, 721–729 | DOI | MR | Zbl

[14] S. I. Kabanikhin, “Definitions and examples of inverse and ill-posed problems”, J. Inverse Ill-Posed Probl., 16:4 (2008), 317–357 | DOI | MR

[15] B. Kaltenbacher, W. Rundell, “The inverse problem of reconstructing reaction-diffusion systems”, Inverse Problems, 36:5 (2020), 065011, 34 pp., arXiv: 2003.00489 | DOI | MR

[16] M. S. Pilant, W. Rundell, “An inverse problem for a nonlinear parabolic equation”, Commun. Part. Differ. Equ., 11:4 (1986), 445–457 | DOI | MR

[17] K. Atifi, I. Boutaayamou, H. Sidi, J. Salhi, “An inverse source problem for singular parabolic equations with interior degeneracy”, Abstract Appl. Anal., 2018 (2018), 2067304, 16 pp. | DOI | MR

[18] S. Banholzer, G. Fabrini, L. Grune, S. Volkwein, “Multiobjective model predictive control of a parabolic advection-diffusion-reaction equation”, Mathematics, 8:5 (2020), 777, 19 pp. | DOI

[19] L. Liu, Y. Yang, “Inverse optimality problem for singularly perturbed systems”, Proceedings of the 32nd Chinese Control Conference (Xi'an, China, 26–28 July, 2013), ed. Q. Pan, IEEE, 2013, 2322–2326

[20] G. M. Henkin, A. A. Shananin, A. T. Tumanov, “Estimates for solutions of Burgers type equations and some applications”, J. Math. Pures Appl., 84:6 (2005), 717–752 | DOI | MR

[21] G. M. Henkin, “Asymptotic structure for solutions of the Cauchy problem for Burgers type equations”, J. Fixed Point Theory Appl., 1:2 (2007), 239–291 | DOI | MR

[22] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 233–247 | DOI | MR

[23] V. T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analitiko-chislennyi podkhod k opisaniyu periodicheskikh po vremeni dvizhuschikhsya frontov v singulyarno vozmuschennykh modelyakh reaktsiya-diffuziya-advektsiya”, Zh. vychisl. matem. i matem. fiz., 59:1 (2019), 50–62 | DOI | DOI

[24] D. Lukyanenko, N. Nefedov, E. Nikulin, V. Volkov, “Use of asymptotics for new dynamic adapted mesh construction for periodic solutions with an interior layer of reaction-diffusion-advection equations”, Numerical Analysis and Its Applications (Lozenetz, Bulgaria, June 15–22, 2016), Lecture Notes in Computer Science, 10187, eds. I. Dimov, I. Faragó, L. Vulkov, Springer, Cham, 2017, 107–118 | DOI | MR | Zbl

[25] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data”, Comput. Math. Appl., 77:5 (2019), 1245–1254 | DOI | MR

[26] D. V. Lukyanenko, V. T. Volkov, N. N. Nefedov, A. G. Yagola, “Primenenie asimptoticheskogo analiza dlya resheniya obratnoi zadachi opredeleniya koeffitsienta lineinogo usileniya v uravnenii tipa Byurgersa”, Vestn. Mosk. un-ta. Ser. 3: Fiz. Astron., 2019, no. 2, 38–43 | DOI

[27] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Asymptotic analysis of solving an inverse boundary value problem for a nonlinear singularly perturbed time-periodic reaction-diffusion-advection equation”, J. Inverse Ill-Posed Probl., 27:5 (2019), 745–758 | DOI | MR

[28] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie koeffitsientnykh obratnykh zadach dlya uravnenii tipa Byurgersa”, Zh. vychisl. matem. i matem. fiz., 60:6 (2020), 975–984 | DOI | DOI

[29] N. N. Nefedov, V. T. Volkov, “Asymptotic solution of the inverse problem for restoring the modular type source in Burgers' equation with modular advection”, J. Inverse Ill-Posed Probl., 28:5 (2020), 633–639 | DOI | MR

[30] P. Hess, Periodic-Parabolic Boundary Value Problems and Positivity, Pitman Research Notes in Mathematics Series, 247, John Wiley and Sons, New York, 1991 | MR