Mots-clés : QP formalism, Painlevé property.
@article{TMF_2022_212_2_a0,
author = {T. Bountis and L. Brenig},
title = {Comparison between {the~QP} formalism and the~ {Painlev\'e} property in integrable dynamical systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {167--178},
year = {2022},
volume = {212},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/}
}
TY - JOUR AU - T. Bountis AU - L. Brenig TI - Comparison between the QP formalism and the Painlevé property in integrable dynamical systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 167 EP - 178 VL - 212 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/ LA - ru ID - TMF_2022_212_2_a0 ER -
T. Bountis; L. Brenig. Comparison between the QP formalism and the Painlevé property in integrable dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/
[1] L. Brenig, A. Goriely, “Universal canonical forms for time-continuous dynamical systems”, Phys. Rev. A, 40:7 (1989), 4119–4122 | DOI
[2] A. Figueiredo, T. M. Rocha Filho, L. Brenig, “Algebraic structures and invariant manifolds of differential systems”, J. Math. Phys., 39:5 (1998), 2929–2946 | DOI | MR
[3] A. Figueiredo, T. M. Rocha Filho, L. Brenig, “Necessary conditions for the existence of quasi-polynomial invariants: the quasi-polynomial and Lotka–Volterra systems”, Phys. A, 262:1–2 (1999), 158–180 | DOI | MR
[4] L. Brenig, “Reducing dynamical systems to canonical forms”, Philos. Trans. Roy. Soc. A, 376:2124 (2018), 20170384, 17 pp. | DOI | MR
[5] B. Hernández-Bermejo, V. Fairén, “Non-polynomial vector fields under the Lotka–Volterra normal form”, Phys. Lett. A, 206:1–2 (1995), 31–37, arXiv: 1910.01962 | DOI | MR
[6] A. Ramani, B. Grammaticos, T. Bountis, “The Painlevé property and singularity analysis of integrable and non-integrable systems”, Phys. Rep., 180:3 (1989), 159–245 | DOI | MR
[7] M. Tabor, Khaos i integriruemost v nelineinoi dinamike, URSS, M., 2001 | MR
[8] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, Advanced Series in Nonlinear Dynamics, 19, World Sci., Singapore, 2001 | DOI | MR
[9] T. C. Bountis, A. Ramani, B. Grammaticos, B. Dorizzi, “On the complete and partial integrability of non-Hamiltonian systems”, Phys. A, 128:1–2 (1984), 268–288 | DOI | MR
[10] T. Bountis, P. Vanhaecke, “Lotka–Volterra systems satisfying a strong Painlevé property”, Phys. Lett. A, 380:47 (2016), 3977–3982 | DOI | MR
[11] R. M. May, W. J. Leonard, “Nonlinear aspects of competition between three species”, SIAM J. Appl. Math., 29:2 (1975), 243–253 | DOI | MR
[12] A. S. Pikovskii, M. I. Rabinovich, “Stochastic behavior of dissipative systems”, Soc. Sci. Rev. C: Math. Phys. Rev., 2 (1981), 165–208 | MR
[13] T. Rikitake, “Oscillations of a system of disk dynamos”, Proc. Cambridge Philos. Soc., 54:1 (1957), 89–105 | DOI | MR
[14] W.-H. Steeb, A. Kunick, W. Strampp, “The Rikitake two-disc dynamo system and the Painlevé property”, J. Phys. Soc. Japan, 52:8 (1983), 2649–2653 | DOI | MR