Comparison between the QP formalism and the  Painlevé property in integrable dynamical systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 167-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The quasipolynomial (QP) formalism and the Painlevé property constitute two distinct approaches for studying the integrability of systems of ordinary differential equations with polynomial nonlinearities. The former relies on a set of quasimonomial variable transformations, which explore the existence of hidden quasipolynomial invariants, while the latter requires that all solutions be meromorphic, expressed in the form of Laurent series in the complex time domain. In this paper, we compare the effectiveness of these approaches as independent methods for identifying integrals of motion, in many examples of polynomial dynamical systems of physical interest.
Keywords: integrable dynamical systems
Mots-clés : QP formalism, Painlevé property.
@article{TMF_2022_212_2_a0,
     author = {T. Bountis and L. Brenig},
     title = {Comparison between {the~QP} formalism and the~ {Painlev\'e} property in integrable dynamical systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {167--178},
     year = {2022},
     volume = {212},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/}
}
TY  - JOUR
AU  - T. Bountis
AU  - L. Brenig
TI  - Comparison between the QP formalism and the  Painlevé property in integrable dynamical systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 167
EP  - 178
VL  - 212
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/
LA  - ru
ID  - TMF_2022_212_2_a0
ER  - 
%0 Journal Article
%A T. Bountis
%A L. Brenig
%T Comparison between the QP formalism and the  Painlevé property in integrable dynamical systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 167-178
%V 212
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/
%G ru
%F TMF_2022_212_2_a0
T. Bountis; L. Brenig. Comparison between the QP formalism and the  Painlevé property in integrable dynamical systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 2, pp. 167-178. http://geodesic.mathdoc.fr/item/TMF_2022_212_2_a0/

[1] L. Brenig, A. Goriely, “Universal canonical forms for time-continuous dynamical systems”, Phys. Rev. A, 40:7 (1989), 4119–4122 | DOI

[2] A. Figueiredo, T. M. Rocha Filho, L. Brenig, “Algebraic structures and invariant manifolds of differential systems”, J. Math. Phys., 39:5 (1998), 2929–2946 | DOI | MR

[3] A. Figueiredo, T. M. Rocha Filho, L. Brenig, “Necessary conditions for the existence of quasi-polynomial invariants: the quasi-polynomial and Lotka–Volterra systems”, Phys. A, 262:1–2 (1999), 158–180 | DOI | MR

[4] L. Brenig, “Reducing dynamical systems to canonical forms”, Philos. Trans. Roy. Soc. A, 376:2124 (2018), 20170384, 17 pp. | DOI | MR

[5] B. Hernández-Bermejo, V. Fairén, “Non-polynomial vector fields under the Lotka–Volterra normal form”, Phys. Lett. A, 206:1–2 (1995), 31–37, arXiv: 1910.01962 | DOI | MR

[6] A. Ramani, B. Grammaticos, T. Bountis, “The Painlevé property and singularity analysis of integrable and non-integrable systems”, Phys. Rep., 180:3 (1989), 159–245 | DOI | MR

[7] M. Tabor, Khaos i integriruemost v nelineinoi dinamike, URSS, M., 2001 | MR

[8] A. Goriely, Integrability and Nonintegrability of Dynamical Systems, Advanced Series in Nonlinear Dynamics, 19, World Sci., Singapore, 2001 | DOI | MR

[9] T. C. Bountis, A. Ramani, B. Grammaticos, B. Dorizzi, “On the complete and partial integrability of non-Hamiltonian systems”, Phys. A, 128:1–2 (1984), 268–288 | DOI | MR

[10] T. Bountis, P. Vanhaecke, “Lotka–Volterra systems satisfying a strong Painlevé property”, Phys. Lett. A, 380:47 (2016), 3977–3982 | DOI | MR

[11] R. M. May, W. J. Leonard, “Nonlinear aspects of competition between three species”, SIAM J. Appl. Math., 29:2 (1975), 243–253 | DOI | MR

[12] A. S. Pikovskii, M. I. Rabinovich, “Stochastic behavior of dissipative systems”, Soc. Sci. Rev. C: Math. Phys. Rev., 2 (1981), 165–208 | MR

[13] T. Rikitake, “Oscillations of a system of disk dynamos”, Proc. Cambridge Philos. Soc., 54:1 (1957), 89–105 | DOI | MR

[14] W.-H. Steeb, A. Kunick, W. Strampp, “The Rikitake two-disc dynamo system and the Painlevé property”, J. Phys. Soc. Japan, 52:8 (1983), 2649–2653 | DOI | MR