On Killing tensors in three-dimensional Euclidean space
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 149-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the properties of second-order Killing tensors in three-dimensional Euclidean space that guarantee the existence of a third integral of motion ensuring the Liouville integrability of the corresponding equations of motion. We prove that in addition to the linear Noether and quadratic Stäckel integrals of motion, there are integrable systems with two quadratic integrals of motion and one fourth-order integral of motion in momenta. A generalization to $n$-dimensional case and to deformations of the standard flat metric is proposed.
Keywords: Hamilton–Jacobi equations, separation of variables, Killing tensors.
@article{TMF_2022_212_1_a9,
     author = {A. V. Tsiganov},
     title = {On {Killing} tensors in three-dimensional {Euclidean} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {149--164},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - On Killing tensors in three-dimensional Euclidean space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 149
EP  - 164
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/
LA  - ru
ID  - TMF_2022_212_1_a9
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T On Killing tensors in three-dimensional Euclidean space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 149-164
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/
%G ru
%F TMF_2022_212_1_a9
A. V. Tsiganov. On Killing tensors in three-dimensional Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 149-164. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/

[1] V. V. Kozlov, “Multigamiltonovost lineinoi sistemy s kvadratichnym invariantom”, Algebra i analiz, 30:5 (2018), 159–168 | DOI

[2] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom i polnaya integriruemost uravneniya Shredingera”, UMN, 74:5(449) (2019), 189–190 | DOI | DOI | MR

[3] V. V. Kozlov, “Kvadratichnye zakony sokhraneniya uravnenii matematicheskoi fiziki”, UMN, 75:3(453) (2020), 55–106 | DOI | DOI | MR

[4] V. V. Kozlov, “Integrals of circulatory systems which are quadratic in momenta”, Regul. Chaotic Dyn., 26:6 (2021), 647–657 | DOI | MR

[5] S. Benenti, “Separability in Riemannian manifolds”, SIGMA, 12 (2016), 013, 21 pp. | DOI | MR

[6] J. T. Horwood, R. G. McLenaghan, R. G. Smirnov, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Commun. Math. Phys., 259:3 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR

[7] A. V. Tsiganov, “The Stäckel systems and algebraic curves”, J. Math. Phys., 40:1 (1999), 279–298 | DOI | MR

[8] L. P. Eisenhart, “Separable systems of Stäckel”, Ann. Math., 35:2 (1934), 284–305 | DOI | MR

[9] J. A. Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, Grundlehren der Mathematischen Wissenschaften, 10, Springer, Berlin, 1954 | DOI | MR

[10] A. Tonolo, “Sulle varietà Riemanniane normali a tre dimensioni”, Pont. Acad. Sci. Acta, 13 (1949), 29–53 | MR

[11] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13 (1951), 200–212 | DOI | MR

[12] J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR

[13] M. N. Olevskii, “Triortogonalnye sistemy v prostranstvakh postoyannoi krivizny, v kotorykh uravnenie $\Delta_2 u+\lambda u=0$ dopuskaet polnoe razdelenie peremennykh”, Matem. sb., 27(69):3 (1950), 379–426 | MR | Zbl

[14] P. Tempesta, G. Tondo, “Higher Haantjes brackets and integrability”, Commun. Math. Phys., 389:3 (2022), 1647–1671 | DOI | MR

[15] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1970

[16] B. Grammaticos, B. Dorizzi, A. Ramani, J. Hietarinta, “Extending integrable hamiltonian systems from $2$ to $N$ dimensions”, Phys. Lett. A, 109:3 (1985), 81–84 | DOI | MR

[17] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl

[18] A. V. Tsyganov, “O dvukh integriruemykh sistemakh s integralami dvizheniya chetvertoi stepeni”, TMF, 186:3 (2016), 443–455 | DOI | DOI | MR

[19] A. V. Tsiganov, On integrable systems outside Nijenhuis and Haantjes geometry, arXiv: 2102.10272

[20] B. Coll, J. Llosa, D. Soler, “Three-dimensional metrics as deformations of a constant curvature metric”, Gen. Rel. Grav., 34:2 (2002), 269–282 | DOI | MR

[21] A. P. Fordy, Q. Huang, “Generalised Darboux–Koenigs metrics and 3-dimensional superintegrable systems”, SIGMA, 15 (2019), 037, 30 pp. | DOI | MR

[22] Á. Ballesteros, I. Gutiérrez-Sagredo, P. Naranjo, “On Hamiltonians with position-dependent mass from Kaluza–Klein compactifications”, Phys. Lett. A, 381:7 (2017), 701–706 | DOI | MR

[23] B. G. da Costa, I. S. Gomez, “Information-theoretic measures for a position-dependent mass system in an infinite potential well”, Phys. A, 541 (2020), 123698, 13 pp. | DOI | MR

[24] B. Rath, P. Mallick, P. Mohapatra, J. Asad, H. Shanak, R. Jarrar, “Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study”, Open Physics, 19:1 (2021), 266–276 | DOI

[25] A. V. Tsyganov, “O superintegriruemykh sistemax c algebraicheskimi i ratsionalnymi integralami dvizheniya”, TMF, 199:2 (2019), 218–234 | DOI | DOI | MR