@article{TMF_2022_212_1_a9,
author = {A. V. Tsiganov},
title = {On {Killing} tensors in three-dimensional {Euclidean} space},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {149--164},
year = {2022},
volume = {212},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/}
}
A. V. Tsiganov. On Killing tensors in three-dimensional Euclidean space. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 149-164. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a9/
[1] V. V. Kozlov, “Multigamiltonovost lineinoi sistemy s kvadratichnym invariantom”, Algebra i analiz, 30:5 (2018), 159–168 | DOI
[2] V. V. Kozlov, “Lineinye sistemy s kvadratichnym integralom i polnaya integriruemost uravneniya Shredingera”, UMN, 74:5(449) (2019), 189–190 | DOI | DOI | MR
[3] V. V. Kozlov, “Kvadratichnye zakony sokhraneniya uravnenii matematicheskoi fiziki”, UMN, 75:3(453) (2020), 55–106 | DOI | DOI | MR
[4] V. V. Kozlov, “Integrals of circulatory systems which are quadratic in momenta”, Regul. Chaotic Dyn., 26:6 (2021), 647–657 | DOI | MR
[5] S. Benenti, “Separability in Riemannian manifolds”, SIGMA, 12 (2016), 013, 21 pp. | DOI | MR
[6] J. T. Horwood, R. G. McLenaghan, R. G. Smirnov, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space”, Commun. Math. Phys., 259:3 (2005), 679–709, arXiv: math-ph/0605023 | DOI | MR
[7] A. V. Tsiganov, “The Stäckel systems and algebraic curves”, J. Math. Phys., 40:1 (1999), 279–298 | DOI | MR
[8] L. P. Eisenhart, “Separable systems of Stäckel”, Ann. Math., 35:2 (1934), 284–305 | DOI | MR
[9] J. A. Schouten, Ricci-Calculus: An Introduction to Tensor Analysis and Its Geometrical Applications, Grundlehren der Mathematischen Wissenschaften, 10, Springer, Berlin, 1954 | DOI | MR
[10] A. Tonolo, “Sulle varietà Riemanniane normali a tre dimensioni”, Pont. Acad. Sci. Acta, 13 (1949), 29–53 | MR
[11] A. Nijenhuis, “$X_{n-1}$-forming sets of eigenvectors”, Indag. Math., 13 (1951), 200–212 | DOI | MR
[12] J. Haantjes, “On $X_{m}$-forming sets of eigenvectors”, Indag. Math., 17 (1955), 158–162 | DOI | MR
[13] M. N. Olevskii, “Triortogonalnye sistemy v prostranstvakh postoyannoi krivizny, v kotorykh uravnenie $\Delta_2 u+\lambda u=0$ dopuskaet polnoe razdelenie peremennykh”, Matem. sb., 27(69):3 (1950), 379–426 | MR | Zbl
[14] P. Tempesta, G. Tondo, “Higher Haantjes brackets and integrability”, Commun. Math. Phys., 389:3 (2022), 1647–1671 | DOI | MR
[15] G. Korn, T. Korn, Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1970
[16] B. Grammaticos, B. Dorizzi, A. Ramani, J. Hietarinta, “Extending integrable hamiltonian systems from $2$ to $N$ dimensions”, Phys. Lett. A, 109:3 (1985), 81–84 | DOI | MR
[17] A. V. Tsiganov, “Killing tensors with nonvanishing Haantjes torsion and integrable systems”, Regul. Chaotic Dyn., 20:4 (2015), 463–475 | DOI | MR | Zbl
[18] A. V. Tsyganov, “O dvukh integriruemykh sistemakh s integralami dvizheniya chetvertoi stepeni”, TMF, 186:3 (2016), 443–455 | DOI | DOI | MR
[19] A. V. Tsiganov, On integrable systems outside Nijenhuis and Haantjes geometry, arXiv: 2102.10272
[20] B. Coll, J. Llosa, D. Soler, “Three-dimensional metrics as deformations of a constant curvature metric”, Gen. Rel. Grav., 34:2 (2002), 269–282 | DOI | MR
[21] A. P. Fordy, Q. Huang, “Generalised Darboux–Koenigs metrics and 3-dimensional superintegrable systems”, SIGMA, 15 (2019), 037, 30 pp. | DOI | MR
[22] Á. Ballesteros, I. Gutiérrez-Sagredo, P. Naranjo, “On Hamiltonians with position-dependent mass from Kaluza–Klein compactifications”, Phys. Lett. A, 381:7 (2017), 701–706 | DOI | MR
[23] B. G. da Costa, I. S. Gomez, “Information-theoretic measures for a position-dependent mass system in an infinite potential well”, Phys. A, 541 (2020), 123698, 13 pp. | DOI | MR
[24] B. Rath, P. Mallick, P. Mohapatra, J. Asad, H. Shanak, R. Jarrar, “Position-dependent finite symmetric mass harmonic like oscillator: Classical and quantum mechanical study”, Open Physics, 19:1 (2021), 266–276 | DOI
[25] A. V. Tsyganov, “O superintegriruemykh sistemax c algebraicheskimi i ratsionalnymi integralami dvizheniya”, TMF, 199:2 (2019), 218–234 | DOI | DOI | MR