Hamiltonian dynamics of a spaceship in Alcubierre and Gödel metrics: Recursion operators and underlying master symmetries
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 129-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Hamiltonian dynamics of a spaceship in the background of Alcubierre and Gödel metrics. We derive the Hamiltonian vector fields governing the system evolution, and construct and discuss the associated recursion operators generating the constants of motion. We also characterize relevant master symmetries.
Keywords: Hamiltonian dynamics, recursion operator, master symmetry.
Mots-clés : Alcubierre metric, Poisson bracket, Gödel metric
@article{TMF_2022_212_1_a8,
     author = {M. N. Hounkonnou and M. J. Landalidji and M. Mitrovic},
     title = {Hamiltonian dynamics of a~spaceship in {Alcubierre} and {G\"odel} metrics: {Recursion} operators and underlying master symmetries},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {129--148},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a8/}
}
TY  - JOUR
AU  - M. N. Hounkonnou
AU  - M. J. Landalidji
AU  - M. Mitrovic
TI  - Hamiltonian dynamics of a spaceship in Alcubierre and Gödel metrics: Recursion operators and underlying master symmetries
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 129
EP  - 148
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a8/
LA  - ru
ID  - TMF_2022_212_1_a8
ER  - 
%0 Journal Article
%A M. N. Hounkonnou
%A M. J. Landalidji
%A M. Mitrovic
%T Hamiltonian dynamics of a spaceship in Alcubierre and Gödel metrics: Recursion operators and underlying master symmetries
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 129-148
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a8/
%G ru
%F TMF_2022_212_1_a8
M. N. Hounkonnou; M. J. Landalidji; M. Mitrovic. Hamiltonian dynamics of a spaceship in Alcubierre and Gödel metrics: Recursion operators and underlying master symmetries. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 129-148. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a8/

[1] K. Gödel, “An example of a new type of cosmological solutions of Einstein's field equations of gravitation”, Rev. Modern Phys., 21:3 (1949), 447–450 | DOI | MR

[2] J. F. García, C. Sabín, “Dirac equation in exotic spacetimes”, Phys. Rev. D, 99:2 (2019), 025008, 8 pp. | DOI | MR

[3] E. Kajari, R. Walser, W. P. Schleich, A. Delgado, “Sagnac effect of Gödel's universe”, Gen. Rel. Grav., 36:10 (2004), 2289–2316 | DOI | MR

[4] T. P. Kling, F. Ahmed, M. Lalumiere, “Wave fronts in a causality-violating Gödel-type metric”, Adv. High Energy Phys., 2020 (2020), 8713756, 13 pp. | DOI | MR

[5] F. Ahmed, “The energy-momentum distributions and relativistic quantum effects on scalar and spin-half particles in a Gödel-type space-time”, Eur. Phys. J. C, 78:7 (2018), 598, 8 pp. ; “The Dirac equation in a class of topologically trival flat Gödel-type space-time backgrounds”, 79:6 (2019), 534, 10 pp. | DOI | DOI

[6] C. Sabín, “One-dimensional sections of exotic spacetimes with superconducting circuits”, New J. Phys., 20:5 (2018), 053028, 7 pp. | DOI | MR

[7] M. Alcubierre, “The warp drive: hyper-fast travel within general relativity”, Class. Quantum Grav., 11:5 (1994), L73–L77, arXiv: gr-qc/0009013 | DOI | MR

[8] U. V. Gabriele, Z. Burstein, “Conformal gravity and the Alcubierre warp drive metric”, ISRN Astron. Astrophys., 2013 (2013), 482734, 13 pp. | DOI

[9] R. Liouville, “Sur le mouvement d'un corps solide pesant suspendu par l'un de ses points”, Acta Math., 20:1 (1897), 239–284 | DOI | MR

[10] H. Poincaré, “Sur les quadratures mécaniques”, Bull. Astron., 16 (1899), 382–387 | DOI

[11] S. De Filippo, G. Vilasi, G. Marmo, M. Salerno, “A new characterization of completely integrable systems”, Nuovo Cimento B, 83:2 (1984), 97–112 | DOI | MR

[12] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR

[13] I. M. Gelfand, I. Ya. Dorfman, “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego pril., 14:3 (1980), 71–74 | DOI | MR | Zbl

[14] G. Vilasi, “On the Hamiltonian structures of the Korteweg–de Vries and sine-Gordon theories”, Phys. Lett. B, 94:2 (1980), 195–198 | DOI | MR

[15] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary ways”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[16] T. Takeuchi, “On the construction of recursion operators for the Kerr–Newman and FLRW metrics”, J. Geom. Symmetry Phys., 37 (2015), 85–96 | DOI | MR

[17] M. N. Hounkonnou, M. J. Landalidji, E. Balo\"{i}tcha, “Recursion operator in a noncommutative Minkowski phase space”, Geometric Methods in Physics XXXVI (Białowie.{z}a, Poland, July 2–8, 2017), Trends in Mathematics, eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2019, 83–93 | DOI | MR | Zbl

[18] M. N. Hounkonnou, M. J. Landalidji, “Hamiltonian dynamics for the Kepler problem in a deformed phase space”, Geometric Methods in Physics XXXVII (Białowie.{z}a, Poland, July 1 – 7, 2018), Trends in Mathematics, eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2019, 34–48 | DOI | MR

[19] R. G. Smirnov, “Magri–Morosi–Gel'fand–Dorfman's bi-Hamiltonian constructions in the action-angle variables”, J. Math. Phys., 38:12 (1997), 6444–6454 | DOI | MR

[20] W. Oevel, “A geometrical approach to integrable systems admitting time dependent invariants”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, Proceedings of the Conference on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform (Oberwolfach, Germany, July 27 – August 2, 1986), eds. M. Ablowitz, B. Fuchssteiner, M. Kruskal, World Sci., Singapore, 1987, 108–124 | MR

[21] R. L. Fernandes, “On the master symmetries and bi-Hamiltonian structure of the Toda lattice”, J. Phys. A: Math. Gen., 26:15 (1993), 3797–3803 | DOI | MR

[22] R. G. Smirnov, “The action-angle coordinates revisited: bi-Hamiltonian systems”, Rep. Math. Phys., 44:1–2 (1999), 199–204 | DOI | MR

[23] M. F. Rañada, “A system of $n=3$ coupled oscillators with magnetic terms: symmetries and integrals of motion”, SIGMA, 1 (2005), 004, 7 pp. | DOI | MR | Zbl

[24] M. N. Khounkonyu, M. Dzh. Landalidzhi, M. Mitrovich, “Nekommutativnaya keplerova dinamika: gruppy simmetrii i bigamiltonovy struktury”, TMF, 207:3 (2021), 403–423 | DOI | DOI

[25] B. Dubrovin, Bihamiltonian Structures of PDEs and Frobenius Manifolds, Lectures at the ICTP Summer School “Poisson Geometry” (Trieste, July 11–15, 2005), SISSA, Trieste, Italia, 2005

[26] R. Caseiro, “Master integrals, superintegrability and quadratic algebras”, Bull. Sci. Math., 126:8 (2002), 617–630 | DOI | MR

[27] P. A. Damianou, “Symmetries of Toda equations”, J. Phys. A: Math. Gen., 26:15 (1993), 3791–3796 | DOI | MR

[28] M. F. Rañada, “Superintegrability of the Calogero–Moser system: constants of motion, master symmetries, and time-dependent symmetries”, J. Math. Phys., 40:1 (1999), 236–247 | DOI | MR

[29] G. Vilasi, Hamiltonian Dynamics, World Sci., Singapore, 2001 | DOI | MR

[30] R. Abraham, J. E. Marsden, Foundation of Mechanics, Addison-Wesley, New York, 1978 | MR

[31] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003

[32] O. I. Bogoyavlenskij, “Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures”, Commun. Math. Phys., 180:3 (1996), 529–586 | DOI | MR | Zbl

[33] Y. A. Grigoryev, A. V. Tsiganov, “On bi-Hamiltonian formulation of the perturbed Kepler problem”, J. Phys. A: Math. Theor., 48:17 (2015), 175206, 7 pp. | DOI | MR