Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 109-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Moduli spaces of stable vector bundles and compactifications of these moduli spaces are closely related to Yang–Mills gauge field theory. This paper is devoted to finding an appropriate compactification of the moduli space of stable vector bundles on an algebraic variety of dimension $\ge 2$. We consider admissible pairs $((\widetilde S, \widetilde L), \widetilde E)$, each of which consists of an $N$-dimensional admissible scheme $\widetilde S$ of some class with a certain ample line bundle $\widetilde L$ and of a vector bundle $\widetilde E$. An admissible pair can be obtained by a transformation (called a resolution) of a torsion-free coherent sheaf $E$ on a nonsingular $N$-dimensional projective algebraic variety $S$ to a vector bundle $\widetilde E$ on a certain projective scheme $\widetilde S$. The notions of stability (semistability) for admissible pairs and of M-equivalence for admissible pairs in the multidimensional case are introduced. We also study relations of the stability (semistability) for admissible pairs to the classical stability (semistability) for coherent sheaves under the resolution and relations of the M-equivalence for semistable admissible pairs to the S-equivalence of coherent sheaves under the resolution. The obtained results are intended for constructing a compactification of the moduli space of stable vector bundles and an ambient moduli space of semistable admissible pairs.
Mots-clés : moduli space, compactification of moduli space.
Keywords: algebraic coherent sheaves, admissible pairs, vector bundles, nonsingular algebraic variety, projective algebraic variety, $N$-dimensional algebraic variety, moduli of vector bundles
@article{TMF_2022_212_1_a7,
     author = {N. V. Timofeeva},
     title = {Stability and equivalence of admissible pairs of arbitrary dimension for a~compactification of the~moduli space of stable vector bundles},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {109--128},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 109
EP  - 128
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/
LA  - ru
ID  - TMF_2022_212_1_a7
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 109-128
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/
%G ru
%F TMF_2022_212_1_a7
N. V. Timofeeva. Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/

[1] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A., 362:1711 (1978), 425–461 | DOI | MR

[2] M. F. Atiyah, R. Bott, “Yang–Mills and bundles over algebraic curves”, Geometry and Analysis: Papers dedicated to the memory of V. K. Patodi, Indian Acad. Sci., Bangalore, 1980, 11–20 ; Proc. Indian Acad. Sci. Math. Sci., 90:1 (1981), 11–20 | MR | Zbl | DOI

[3] S. K. Donaldson, “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundle”, Proc. London Math. Soc., 50:1 (1985), 1–26 | DOI | MR

[4] S. K. Donaldson, “Compactification and completion of Yang–Mills moduli spaces”, Differential Geometry, Proceedings of the 3rd International Symposium (Peniscola, Spain, June 5–12, 1988), Lecture Notes in Mathematics, 1410, eds. F. J. Carreras, O. Gil-Medrano, A. M. Naveira, Springer, Berlin, Heidelberg, 1989, 145–160 | DOI | Zbl

[5] N. V. Timofeeva, Moduli of admissible pairs for arbitrary dimension, I: Resolution, arXiv: 2012.11194

[6] M. Lübke, A. Teleman, The Kobayashi–Hitchin Correspondence, World Sci., Singapore, 1995 | DOI | MR

[7] J. Li, “Algebraic geometric interpretation of Donaldson's polynomial invariants”, J. Differential Geom., 37:2 (1993), 417–466 | DOI | MR

[8] M. Maruyama, “Moduli of stable sheaves. I”, J. Math. Kyoto Univ., 17:1 (1977), 91–126 | DOI | MR

[9] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | DOI | MR

[10] V. Baranovsky, “Uhlenbeck compactification as a functor”, Int. Math. Res. Notices, 2015:23 (2015), 12678–1271 | DOI | MR

[11] U. Bruzzo, D. Markushevich, A. Tikhomirov, “Uhlenbeck–Donaldson compactification for framed sheaves on projective surfaces”, Math. Z., 275:3–4 (2013), 1073–1093 | DOI | MR

[12] P. M. N. Feehan, “Geometry of the ends of the moduli space of anti-self-dual connections”, J. Differential Geom., 42:3 (1995), 465–553 | DOI | MR

[13] D. Markushevich, A. Tikhomirov, G. Trautmann, “Bubble tree compactification of moduli spaces of vector bundles on surfaces”, Cent. Eur. J. Math., 10:4 (2012), 1331–1355 | DOI | MR

[14] N. V. Timofeeva, “Moduli dopustimykh par i moduli Gizekera–Maruyamy”, Matem. sb., 210:5 (2019), 109–134 | DOI | MR

[15] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti”, Matem. sb., 199:7 (2008), 103–122 | DOI | DOI | MR

[16] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. II”, Matem. sb., 200:3 (2009), 95–118 | DOI | DOI | MR | Zbl

[17] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. III: Funktorialnyi podkhod”, Matem. sb., 202:3 (2011), 107–160 | DOI | DOI | MR | Zbl

[18] N. V. Timofeeva, “O vyrozhdenii poverkhnosti v kompaktifikatsii Fittinga modulei stabilnykh vektornykh rassloenii”, Matem. zametki, 90:1 (2011), 143–150 | DOI | DOI | MR

[19] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. Math., 106:1 (1977), 45–60 | DOI | MR

[20] D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR