Keywords: algebraic coherent sheaves, admissible pairs, vector bundles, nonsingular algebraic variety, projective algebraic variety, $N$-dimensional algebraic variety, moduli of vector bundles
@article{TMF_2022_212_1_a7,
author = {N. V. Timofeeva},
title = {Stability and equivalence of admissible pairs of arbitrary dimension for a~compactification of the~moduli space of stable vector bundles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {109--128},
year = {2022},
volume = {212},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/}
}
TY - JOUR AU - N. V. Timofeeva TI - Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2022 SP - 109 EP - 128 VL - 212 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/ LA - ru ID - TMF_2022_212_1_a7 ER -
%0 Journal Article %A N. V. Timofeeva %T Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles %J Teoretičeskaâ i matematičeskaâ fizika %D 2022 %P 109-128 %V 212 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/ %G ru %F TMF_2022_212_1_a7
N. V. Timofeeva. Stability and equivalence of admissible pairs of arbitrary dimension for a compactification of the moduli space of stable vector bundles. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a7/
[1] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A., 362:1711 (1978), 425–461 | DOI | MR
[2] M. F. Atiyah, R. Bott, “Yang–Mills and bundles over algebraic curves”, Geometry and Analysis: Papers dedicated to the memory of V. K. Patodi, Indian Acad. Sci., Bangalore, 1980, 11–20 ; Proc. Indian Acad. Sci. Math. Sci., 90:1 (1981), 11–20 | MR | Zbl | DOI
[3] S. K. Donaldson, “Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundle”, Proc. London Math. Soc., 50:1 (1985), 1–26 | DOI | MR
[4] S. K. Donaldson, “Compactification and completion of Yang–Mills moduli spaces”, Differential Geometry, Proceedings of the 3rd International Symposium (Peniscola, Spain, June 5–12, 1988), Lecture Notes in Mathematics, 1410, eds. F. J. Carreras, O. Gil-Medrano, A. M. Naveira, Springer, Berlin, Heidelberg, 1989, 145–160 | DOI | Zbl
[5] N. V. Timofeeva, Moduli of admissible pairs for arbitrary dimension, I: Resolution, arXiv: 2012.11194
[6] M. Lübke, A. Teleman, The Kobayashi–Hitchin Correspondence, World Sci., Singapore, 1995 | DOI | MR
[7] J. Li, “Algebraic geometric interpretation of Donaldson's polynomial invariants”, J. Differential Geom., 37:2 (1993), 417–466 | DOI | MR
[8] M. Maruyama, “Moduli of stable sheaves. I”, J. Math. Kyoto Univ., 17:1 (1977), 91–126 | DOI | MR
[9] M. Maruyama, “Moduli of stable sheaves. II”, J. Math. Kyoto Univ., 18:3 (1978), 557–614 | DOI | MR
[10] V. Baranovsky, “Uhlenbeck compactification as a functor”, Int. Math. Res. Notices, 2015:23 (2015), 12678–1271 | DOI | MR
[11] U. Bruzzo, D. Markushevich, A. Tikhomirov, “Uhlenbeck–Donaldson compactification for framed sheaves on projective surfaces”, Math. Z., 275:3–4 (2013), 1073–1093 | DOI | MR
[12] P. M. N. Feehan, “Geometry of the ends of the moduli space of anti-self-dual connections”, J. Differential Geom., 42:3 (1995), 465–553 | DOI | MR
[13] D. Markushevich, A. Tikhomirov, G. Trautmann, “Bubble tree compactification of moduli spaces of vector bundles on surfaces”, Cent. Eur. J. Math., 10:4 (2012), 1331–1355 | DOI | MR
[14] N. V. Timofeeva, “Moduli dopustimykh par i moduli Gizekera–Maruyamy”, Matem. sb., 210:5 (2019), 109–134 | DOI | MR
[15] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti”, Matem. sb., 199:7 (2008), 103–122 | DOI | DOI | MR
[16] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. II”, Matem. sb., 200:3 (2009), 95–118 | DOI | DOI | MR | Zbl
[17] N. V. Timofeeva, “O novoi kompaktifikatsii modulei vektornykh rassloenii na poverkhnosti. III: Funktorialnyi podkhod”, Matem. sb., 202:3 (2011), 107–160 | DOI | DOI | MR | Zbl
[18] N. V. Timofeeva, “O vyrozhdenii poverkhnosti v kompaktifikatsii Fittinga modulei stabilnykh vektornykh rassloenii”, Matem. zametki, 90:1 (2011), 143–150 | DOI | DOI | MR
[19] D. Gieseker, “On the moduli of vector bundles on an algebraic surface”, Ann. Math., 106:1 (1977), 45–60 | DOI | MR
[20] D. Huybrechts, M. Lehn, The Geometry of Moduli Spaces of Sheaves, Cambridge Univ. Press, Cambridge, 2010 | DOI | MR