@article{TMF_2022_212_1_a6,
author = {G. P. Palshin},
title = {On noncompact bifurcation in one generalized model of vortex dynamics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {95--108},
year = {2022},
volume = {212},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/}
}
G. P. Palshin. On noncompact bifurcation in one generalized model of vortex dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/
[1] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Rein. Angew. Math., 55 (1858), 25–55 | DOI | MR
[2] S. Komineas, N. Papanicolaou, “Gröbli solution for three magnetic vortices”, J. Math. Phys., 51:4 (2010), 042705, 18 pp. | DOI | MR
[3] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | DOI | MR | MR | Zbl | Zbl
[4] L. Gavrilov, “Bifurcations of invariant manifolds in the generalized Hénon–Heiles system”, Phys. D, 34:1–2 (1989), 223–239 | DOI | MR
[5] D. V. Novikov, “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li $e(3)$”, Matem. sbornik, 202:5 (2011), 127–160 | DOI | DOI | MR | Zbl
[6] D. A. Fedoseev, “Bifurkatsionnye diagrammy naturalnykh gamiltonovykh sistem na mnogoobraziyakh Bertrana”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2015, no. 1, 62–65 | DOI | MR | Zbl
[7] D. A. Fedoseev, A. T. Fomenko, “Nekompaktnye osobennosti integriruemykh dinamicheskikh sistem”, Fundament. i prikl. matem., 21:6 (2016), 217–243 | DOI | MR
[8] S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060 | DOI | MR
[9] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | DOI | MR
[10] S. M. Ramodanov, S. V. Sokolov, “Dynamics of a circular cylinder and two point vortices in a perfect fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691 | DOI | MR
[11] S. Smeil, “Topologiya i mekhanika”, UMN, 27:2(164) (1972), 77–133 | DOI | DOI | MR | Zbl
[12] P. E. Ryabov, A. A. Shadrin, “Bifurcation diagram of one generalized integrable model of vortex dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431, arXiv: 1904.09387 | DOI | MR
[13] E. A. Ryzhov, K. V. Koshel, “Dynamics of a vortex pair interacting with a fixed point vortex”, Europhys. Lett., 102:4 (2013), 44004, 6 pp. | DOI
[14] K. V. Koshel, J. N. Reinaud, G. Riccardi, E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices”, Phys. Fluids, 30:9 (2018), 096603, 14 pp. | DOI
[15] J. N. Reinaud, K. V. Koshel, E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation”, Phys. Fluids, 30:9 (2018), 096604, 9 pp. | DOI