On noncompact bifurcation in one generalized model of vortex dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 95-108 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalized model of Hamiltonian mechanics is considered. It includes two special cases: a model of the dynamics of three magnetic vortices in ferromagnets and a model of the dynamics of three hydrodynamic vortices in a perfect fluid. A constraint is imposed on the system by fixing one of the vortices at the point of origin. The system of the constrained problem of three magnetic vortices is a completely Liouville-integrable Hamiltonian system with two degrees of freedom. For this system, we find an augmented bifurcation diagram, perform a reduction to a system with one degree of freedom, and investigate level curves of the reduced Hamiltonian in detail. The obtained results show the presence of noncompact bifurcations and a noncritical bifurcation line.
Keywords: vortex dynamics, magnetic vortices, completely integrable Hamiltonian system, augmented bifurcation diagram, noncompact surgery, noncritical bifurcation curve.
@article{TMF_2022_212_1_a6,
     author = {G. P. Palshin},
     title = {On noncompact bifurcation in one generalized model of vortex dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {95--108},
     year = {2022},
     volume = {212},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/}
}
TY  - JOUR
AU  - G. P. Palshin
TI  - On noncompact bifurcation in one generalized model of vortex dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2022
SP  - 95
EP  - 108
VL  - 212
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/
LA  - ru
ID  - TMF_2022_212_1_a6
ER  - 
%0 Journal Article
%A G. P. Palshin
%T On noncompact bifurcation in one generalized model of vortex dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2022
%P 95-108
%V 212
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/
%G ru
%F TMF_2022_212_1_a6
G. P. Palshin. On noncompact bifurcation in one generalized model of vortex dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 212 (2022) no. 1, pp. 95-108. http://geodesic.mathdoc.fr/item/TMF_2022_212_1_a6/

[1] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Rein. Angew. Math., 55 (1858), 25–55 | DOI | MR

[2] S. Komineas, N. Papanicolaou, “Gröbli solution for three magnetic vortices”, J. Math. Phys., 51:4 (2010), 042705, 18 pp. | DOI | MR

[3] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, v. 1, 2, Izd. dom “Udmurtskii universitet”, Izhevsk, 1999 | DOI | MR | MR | Zbl | Zbl

[4] L. Gavrilov, “Bifurcations of invariant manifolds in the generalized Hénon–Heiles system”, Phys. D, 34:1–2 (1989), 223–239 | DOI | MR

[5] D. V. Novikov, “Topologicheskie osobennosti integriruemogo sluchaya Sokolova na algebre Li $e(3)$”, Matem. sbornik, 202:5 (2011), 127–160 | DOI | DOI | MR | Zbl

[6] D. A. Fedoseev, “Bifurkatsionnye diagrammy naturalnykh gamiltonovykh sistem na mnogoobraziyakh Bertrana”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2015, no. 1, 62–65 | DOI | MR | Zbl

[7] D. A. Fedoseev, A. T. Fomenko, “Nekompaktnye osobennosti integriruemykh dinamicheskikh sistem”, Fundament. i prikl. matem., 21:6 (2016), 217–243 | DOI | MR

[8] S. S. Nikolaenko, “Topological classification of the Goryachev integrable systems in the rigid body dynamics: non-compact case”, Lobachevskii J. Math., 38:6 (2017), 1050–1060 | DOI | MR

[9] V. V. Vedyushkina (Fokicheva), A. T. Fomenko, “Integriruemye topologicheskie billiardy i ekvivalentnye dinamicheskie sistemy”, Izv. RAN. Ser. matem., 81:4 (2017), 20–67 | DOI | DOI | MR

[10] S. M. Ramodanov, S. V. Sokolov, “Dynamics of a circular cylinder and two point vortices in a perfect fluid”, Regul. Chaotic Dyn., 26:6 (2021), 675–691 | DOI | MR

[11] S. Smeil, “Topologiya i mekhanika”, UMN, 27:2(164) (1972), 77–133 | DOI | DOI | MR | Zbl

[12] P. E. Ryabov, A. A. Shadrin, “Bifurcation diagram of one generalized integrable model of vortex dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431, arXiv: 1904.09387 | DOI | MR

[13] E. A. Ryzhov, K. V. Koshel, “Dynamics of a vortex pair interacting with a fixed point vortex”, Europhys. Lett., 102:4 (2013), 44004, 6 pp. | DOI

[14] K. V. Koshel, J. N. Reinaud, G. Riccardi, E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices”, Phys. Fluids, 30:9 (2018), 096603, 14 pp. | DOI

[15] J. N. Reinaud, K. V. Koshel, E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. II. Finite size vortices and the effect of deformation”, Phys. Fluids, 30:9 (2018), 096604, 9 pp. | DOI